हिंदी

आव्यूह A =[3211] के लिए a और b ऐसी संख्याएँ ज्ञात कीजिए ताकि A2 + aA + bI = 0 हो। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

आव्यूह A `= [(3,2),(1,1)]` के लिए a और b ऐसी संख्याएँ ज्ञात कीजिए ताकि A2 + aA + bI = 0 हो।

योग

उत्तर

A2 + aA + bI = O

`= [(3,2),(1,1)] [(3,2),(1,1)] + "a" [(3,2),(1,1)] + "b" [(1,0),(0,1)] = [(0,0),(0,0)]`

`= [(9 + 2, 6 + 2),(3 + 1,2 + 1)] - [(3"a", 2"a"),("a","a")] + [("b",0),(0,"b")] = [(0,0),(0,0)]`

`= [(11 + 3"a" + "b", 8 + 2"a" + 0),(4 + "a" + 0, 3 + "a" + "b")] = [(0,0),(0,0)]`

4 + a = 0

a = -4

3 + a + b = 0

3 - 4 + b = 0

b = 1

`therefore` a = - 4, b = 1

shaalaa.com
आव्यूह के सहखंडज और व्युत्क्रम
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: सारणिक - प्रश्नावली 4.5 [पृष्ठ १४३]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 4 सारणिक
प्रश्नावली 4.5 | Q 14. | पृष्ठ १४३

संबंधित प्रश्न

प्रश्न में आव्यूह का सहखंडज (adjoint) ज्ञात कीजिए।

`[(1,2),(3,4)]`


प्रश्न में आव्यूह का सहखंडज (adjoint) ज्ञात कीजिए।

`[(1,-1,2),(2,3,5),(-2,0,1)]`


प्रश्न में सत्यापित कीजिए कि A (adj A) = (adj A). A =|A|. I है।

`[(1,-1,2),(3,0,-2),(1,0,3)]` 


प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।

`[(2,-2),(4,3)]`


प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।

`[(-1,5),(-3,2)]`


प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।

`[(1,2,3),(0,2,4),(0,0,5)]`


प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।

`[(1,0,0),(3,3,0),(5,2,-1)]`


प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।

`[(2,1,3),(4,-1,0),(-7,2,1)]`


प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


यदि `"A" = [(3,7),(2,5)]` और `"B" = [(6,8),(7,9)]` है तो सत्यापित कीजिए कि `("AB")^-1 = "B"^-1 "A"^-1` है।


यदि `"A" = [(3,1),(-1,2)]` है तो दर्शाइए कि A2 - 5A + 7I = 0 है। इसकी सहायता से A-1 ज्ञात कीजिए।


आव्यूह A `= [(1,1,1),(1,2,-3),(2,-1,3)]` के लिए दर्शाइए कि `A^3 - 6A^2 + 5 A + 11 I = 0` है। इसकी सहायता से A-1 ज्ञात कीजिए।


यदि `A = [(2,-1,1),(-1,2,-1),(1,-1,2)],` तो सत्यापित कीजिए कि `A^3 - 6A^2 + 9A - 4I = 0` है तथा इसकी सहायता से A-1 ज्ञात कीजिए।


यदि A, 3 × 3 कोटि का आव्यूह है, तो |adj A| का मान है:


यदि A कोटि 2 को व्युत्क्रमणीय आव्यूह है तो det (A-1) बराबर है:


यदि x, y, z शून्येतर वास्तविक संख्याएँ हों तो आव्यूह A = `[(x,0,0),(0,y,0),(0,0,z)]` का व्युत्क्रम है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×