Advertisements
Advertisements
प्रश्न
आव्यूह A `= [(3,2),(1,1)]` के लिए a और b ऐसी संख्याएँ ज्ञात कीजिए ताकि A2 + aA + bI = 0 हो।
उत्तर
A2 + aA + bI = O
`= [(3,2),(1,1)] [(3,2),(1,1)] + "a" [(3,2),(1,1)] + "b" [(1,0),(0,1)] = [(0,0),(0,0)]`
`= [(9 + 2, 6 + 2),(3 + 1,2 + 1)] - [(3"a", 2"a"),("a","a")] + [("b",0),(0,"b")] = [(0,0),(0,0)]`
`= [(11 + 3"a" + "b", 8 + 2"a" + 0),(4 + "a" + 0, 3 + "a" + "b")] = [(0,0),(0,0)]`
4 + a = 0
a = -4
3 + a + b = 0
3 - 4 + b = 0
b = 1
`therefore` a = - 4, b = 1
APPEARS IN
संबंधित प्रश्न
प्रश्न में आव्यूह का सहखंडज (adjoint) ज्ञात कीजिए।
`[(1,2),(3,4)]`
प्रश्न में आव्यूह का सहखंडज (adjoint) ज्ञात कीजिए।
`[(1,-1,2),(2,3,5),(-2,0,1)]`
प्रश्न में सत्यापित कीजिए कि A (adj A) = (adj A). A =|A|. I है।
`[(1,-1,2),(3,0,-2),(1,0,3)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(2,-2),(4,3)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(-1,5),(-3,2)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,2,3),(0,2,4),(0,0,5)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,0,0),(3,3,0),(5,2,-1)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(2,1,3),(4,-1,0),(-7,2,1)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
यदि `"A" = [(3,7),(2,5)]` और `"B" = [(6,8),(7,9)]` है तो सत्यापित कीजिए कि `("AB")^-1 = "B"^-1 "A"^-1` है।
यदि `"A" = [(3,1),(-1,2)]` है तो दर्शाइए कि A2 - 5A + 7I = 0 है। इसकी सहायता से A-1 ज्ञात कीजिए।
आव्यूह A `= [(1,1,1),(1,2,-3),(2,-1,3)]` के लिए दर्शाइए कि `A^3 - 6A^2 + 5 A + 11 I = 0` है। इसकी सहायता से A-1 ज्ञात कीजिए।
यदि `A = [(2,-1,1),(-1,2,-1),(1,-1,2)],` तो सत्यापित कीजिए कि `A^3 - 6A^2 + 9A - 4I = 0` है तथा इसकी सहायता से A-1 ज्ञात कीजिए।
यदि A, 3 × 3 कोटि का आव्यूह है, तो |adj A| का मान है:
यदि A कोटि 2 को व्युत्क्रमणीय आव्यूह है तो det (A-1) बराबर है:
यदि x, y, z शून्येतर वास्तविक संख्याएँ हों तो आव्यूह A = `[(x,0,0),(0,y,0),(0,0,z)]` का व्युत्क्रम है: