Advertisements
Advertisements
प्रश्न
यदि `A = [(2,-1,1),(-1,2,-1),(1,-1,2)],` तो सत्यापित कीजिए कि `A^3 - 6A^2 + 9A - 4I = 0` है तथा इसकी सहायता से A-1 ज्ञात कीजिए।
उत्तर
`A = [(2,-1,1),(-1,2,-1),(1,-1,2)]`
`A^2 = [(2,-1,1),(-1,2,-1),(1,-1,2)] [(2,-1,1),(-1,2,-1),(1,-1,2)] = [(6,-5,5),(-5,6,-5),(5,-5,6)]`
`A^3 = A^2A = [(6,-5,5),(-5,6,-5),(5,-5,6)] [(2,-1,1),(-1,2,-1),(1,-1,2)] = [(22,-21,21),(-21,22,-21),(21,-21,22)]`
L.H.S = A3 - 6A2 + 9A - 4I
`= [(22,-21,21),(-21,22,-21),(21,-21,22)] - 6 [(6,-5,5),(-5,6,-5),(5,-5,6)] + 9 [(2,-1,1),(-1,2,-1),(1,-1,2)] - 4 [(1,0,0),(0,1,0),(0,0,1)]`
`= [(22,-21,21),(-21,22,-21),(21,-21,22)] - [(36,-30,30),(-30,36,-30),(30,-30,36)] + [(18,-9,9),(-9,18,-9),(9,-9,18)] - [(4,0,0),(0,4,0),(0,0,4)]`
`= [(22 - 36 + 18 - 4, -21 + 30 - 9 - 0, -21 - 30 + 9 - 0),(-21 + 30 - 9 - 0, 22 - 36 + 18 - 4, -21 - 30 + 9 - 0),(21 - 30 + 9 - 0, -21 + 30 - 9 - 0,22 - 36 + 18 - 4)]`
`= [(0,0,0),(0,0,0),(0,0,0)] = 0 = R.H.S`
A3 - 6A2 + 9A - 4I = 0
A3 - 6A2 + 9A = 4I
A2 AA-1 - 6 AA-1 + 9 AA-1 = 4IA-1
4A-1 = A2 - 6A + 9I `= [(6,-5,5),(-5,6,-5),(5,-5,6)] - 6 [(2,-1,1),(-1,2,-1),(1,-1,2)] + 9 [(1,0,0),(0,1,0),(0,0,1)]`
`= 4 [(3,1,-1),(1,3,1),(-1,1,3)]`
APPEARS IN
संबंधित प्रश्न
प्रश्न में आव्यूह का सहखंडज (adjoint) ज्ञात कीजिए।
`[(1,2),(3,4)]`
प्रश्न में आव्यूह का सहखंडज (adjoint) ज्ञात कीजिए।
`[(1,-1,2),(2,3,5),(-2,0,1)]`
प्रश्न में सत्यापित कीजिए कि A (adj A) = (adj A). A =|A|. I है।
`[(1,-1,2),(3,0,-2),(1,0,3)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(2,-2),(4,3)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(-1,5),(-3,2)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,2,3),(0,2,4),(0,0,5)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,0,0),(3,3,0),(5,2,-1)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(2,1,3),(4,-1,0),(-7,2,1)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,0,0),(0,cos alpha, sin alpha),(0,sin alpha, -cos alpha)]`
यदि `"A" = [(3,7),(2,5)]` और `"B" = [(6,8),(7,9)]` है तो सत्यापित कीजिए कि `("AB")^-1 = "B"^-1 "A"^-1` है।
यदि `"A" = [(3,1),(-1,2)]` है तो दर्शाइए कि A2 - 5A + 7I = 0 है। इसकी सहायता से A-1 ज्ञात कीजिए।
आव्यूह A `= [(3,2),(1,1)]` के लिए a और b ऐसी संख्याएँ ज्ञात कीजिए ताकि A2 + aA + bI = 0 हो।
आव्यूह A `= [(1,1,1),(1,2,-3),(2,-1,3)]` के लिए दर्शाइए कि `A^3 - 6A^2 + 5 A + 11 I = 0` है। इसकी सहायता से A-1 ज्ञात कीजिए।
यदि A, 3 × 3 कोटि का आव्यूह है, तो |adj A| का मान है:
यदि A कोटि 2 को व्युत्क्रमणीय आव्यूह है तो det (A-1) बराबर है:
यदि x, y, z शून्येतर वास्तविक संख्याएँ हों तो आव्यूह A = `[(x,0,0),(0,y,0),(0,0,z)]` का व्युत्क्रम है: