हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Air (γ = 1.4) is Pumped at 2 Atm Pressure in a Motor Tyre at 20°C. If the Tyre Suddenly Bursts, - Physics

Advertisements
Advertisements

प्रश्न

Air (γ = 1.4) is pumped at 2 atm pressure in a motor tyre at 20°C. If the tyre suddenly bursts, what would be the temperature of the air coming out of the tyre? Neglect any mixing with the atmospheric air.

संक्षेप में उत्तर

उत्तर

Given:
For air, γ = 1.4
Initial temperature of air, T1 = 20°C = 293 K
Initial pressure, P1 = 2 atm
Final pressure, P2 = 1 atm
The bursting of the tyre is an adiabatic process. For an adiabatic process,

P11-γ × T11-γ = P 1-γ × T2γ

(2)1-1.4 × (293)1.4 = (1) 1-1.4 × T21.4

⇒ (2)-0.4 ×(293)1.4 = T21.4

⇒ 2153.78 =T21.4

⇒ T2 =( 2153.78)1/1.4

= 240.3K

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Specific Heat Capacities of Gases - Exercises [पृष्ठ ७८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 5 Specific Heat Capacities of Gases
Exercises | Q 18 | पृष्ठ ७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A metre long narrow bore held horizontally (and closed at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of air. What happens if the tube is held vertically with the open end at the bottom?


Given below are densities of some solids and liquids. Give rough estimates of the size of their atoms:

Substance Atomic Mass (u) Density (10Kg m-3)
Carbon (diamond) 12.01 2.22
Gold 197.00 19.32
Nitrogen (liquid) 14.01 1.00
Lithium 6.94 0.53
Fluorine (liquid) 19.00 1.14

[Hint: Assume the atoms to be ‘tightly packed’ in a solid or liquid phase, and use the known value of Avogadro’s number. You should, however, not take the actual numbers you obtain for various atomic sizes too literally. Because of the crudeness of the tight packing approximation, the results only indicate that atomic sizes are in the range of a few Å].


Can we define specific heat capacity at constant temperature?


Can a process on an ideal gas be both adiabatic and isothermal?


Can two states of an ideal gas be connected by an isothermal process as well as an adiabatic process?


In an isothermal process on an ideal gas, the pressure increases by 0.5%. The volume decreases by about


Consider the processes A and B shown in the figure. It is possible that


Three identical adiabatic containers A, B and C contain helium, neon and oxygen, respectively, at equal pressure. The gases are pushed to half their original volumes.
(a) The final temperatures in the three containers will be the same.
(b) The final pressures in the three containers will be the same.
(c) The pressures of helium and neon will be the same but that of oxygen will be different.
(d) The temperatures of helium and neon will be the same but that of oxygen will be different.


A sample of air weighing 1.18 g occupies 1.0 × 103 cm3 when kept at 300 K and 1.0 × 105 Pa. When 2.0 cal of heat is added to it at constant volume, its temperature increases by 1°C. Calculate the amount of heat needed to increase the temperature of air by 1°C at constant pressure if the mechanical equivalent of heat is  4.2 × 107 erg cal−1. Assume that air behaves as an ideal gas.


In Joly's differential steam calorimeter, 3 g of an ideal gas is contained in a rigid closed sphere at 20°C. The sphere is heated by steam at 100°C and it is found that an extra 0.095 g of steam has condensed into water as the temperature of the gas becomes constant. Calculate the specific heat capacity of the gas in J g−1 K−1. The latent heat of vaporisation of water = 540 cal g−1 


The figure shows two vessels with adiabatic walls, one containing 0.1 g of helium (γ = 1.67, M = 4 g mol−1)  and the other containing some amount of hydrogen (γ = 1.4, M = 2 g mol−1). Initially, the temperatures of the two gases are equal. The gases are electrically heated for some time during which equal amounts of heat are given to the two gases. It is found that the temperatures rise through the same amount in the two vessels. Calculate the mass of hydrogen.


The speed of sound in hydrogen at 0°C is 1280 m s−1. The density of hydrogen at STP is 0.089 kg m−3. Calculate the molar heat capacities Cp and Cv of hydrogen.


4.0 g of helium occupies 22400 cm3 at STP. The specific heat capacity of helium at constant pressure is 5.0 cal K−1 mol−1. Calculate the speed of sound in helium at STP.


Standing waves of frequency 5.0 kHz are produced in a tube filled with oxygen at 300 K. The separation between the consecutive nodes is 3.3 cm. Calculate the specific heat capacities Cp and Cv of the gas.


A diatomic molecule can be modelled as two rigid balls connected with spring such that the balls can vibrate with respect to centre of mass of the system (spring + balls). Consider a diatomic gas made of such diatomic molecule. If the gas performs 20 Joule of work under isobaric condition, then heat given to the gas is ______ J.


If at same temperature and pressure, the densities for two diatomic gases are respectively d1 and d2 then the ratio of velocities of sound in these gases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×