Advertisements
Advertisements
प्रश्न
An ideal monoatomic gas is adiabatically compressed so that its final temperature is twice its initial temperature. What is the ratio of the final pressure to its initial pressure?
उत्तर १
Data: Tf = 2Ti, monoatomic gas ∴ ϒ = 5/3
PiViϒ = PfVfϒ in an adiabatic process
Now, PV = ηRT ∴ V = `(η"RT")/"P"`
∴ Vi = `(η"RT"_"i")/"P"_"i"` and Vf = `(η"RT"_"f")/"P"_"f"`
∴ Pi `((η"RT")/"P"_"i")^ϒ="P"_"f"((η"RT"_"f")/"P"_"f")^ϒ`
∴ `"P"_"i"^(1-ϒ)"T"_"i"^ϒ="P"_"f"^(1-ϒ)"T"_"f"^ϒ`
∴ `(("T"_"f")/"T"_"i")^ϒ=(("P"_"i")/("P"_"f"))^(1-ϒ)`
∴ `(("T"_"f")/"T"_"i")^ϒ=(("P"_"f")/("P"_"i"))^(ϒ-1)`
∴ 25/3 = `(("P"_"f")/("P"_"i"))^(5//3-1)=(("P"_"f")/("P"_"i"))^(2//3)`
∴ `5/3` log 2 = `2/3` log `"P"_"f"/"p"_"i"`
∴ `5/3xx0.3010 = 2/3` log `(("P"_"f")/"P"_"i")`
∴ (2.5) (0.3010) = log `(("P"_"f")/("P"_"i"))`
∴ 0.7525 = log `("P"_"f"/"P"_"i")`
∴ `("P"_"f")/"P"_"i"` = antilog 0.7525 = 5.656
This is the ratio of the final pressure (Pf) to the initial pressure (Pi).
उत्तर २
Given: Tf = 2Ti, `"P"_"f"/"P"_"i"` = ?
Formula:
`"P"_"f"/"P"_"i" = (("T"_"f")/("T"_"i"))^(gamma/(gamma - 1))`
∴ `"P"_"f"/"P"_"i" = ((2"T"_"i")/("T"_"i"))^((5"/"3)/(5"/"3 - 1))` ............`(∵ "For mono-atomic gas", gamma = 5/3)`
∴ `"P"_"f"/"P"_"i" = 2^2.5`
∴ `"P"_"f"/"P"_"i" = 5.6568`
संबंधित प्रश्न
Write mathematical equation of first law of thermodynamics for the following processes :
Adiabatic process.
Write mathematical equation of first law of thermodynamics for Isochoric process.
Write one statement of first law of thermodyamics and its mathematical expression.
Derive an expression for maximum work in isothermal reversible expansion of two moles of an ideal gas.
Prove that ΔH=ΔU+ΔnRT. what is the condition under which ΔU=ΔH?
Calculate the internal energy at 298K for the formation of one mole of ammonia, if the enthalpy change at constant pressure is – 42.0 kJ mol-1.
(Given: R = 8.314 J K-1 mol-1)