English

An ideal monoatomic gas is adiabatically compressed so that its final temperature is twice its initial temperature. What is the ratio of the final pressure to its initial pressure? - Physics

Advertisements
Advertisements

Question

An ideal monoatomic gas is adiabatically compressed so that its final temperature is twice its initial temperature. What is the ratio of the final pressure to its initial pressure?

Sum

Solution 1

Data: Tf = 2Ti, monoatomic gas ∴ ϒ = 5/3

PiViϒ = PfVfϒ in an adiabatic process

Now, PV = ηRT ∴ V = `(η"RT")/"P"`

∴ Vi = `(η"RT"_"i")/"P"_"i"` and Vf = `(η"RT"_"f")/"P"_"f"`

∴ Pi `((η"RT")/"P"_"i")^ϒ="P"_"f"((η"RT"_"f")/"P"_"f")^ϒ`

∴ `"P"_"i"^(1-ϒ)"T"_"i"^ϒ="P"_"f"^(1-ϒ)"T"_"f"^ϒ`

∴ `(("T"_"f")/"T"_"i")^ϒ=(("P"_"i")/("P"_"f"))^(1-ϒ)`

∴ `(("T"_"f")/"T"_"i")^ϒ=(("P"_"f")/("P"_"i"))^(ϒ-1)`

∴ 25/3 = `(("P"_"f")/("P"_"i"))^(5//3-1)=(("P"_"f")/("P"_"i"))^(2//3)`

∴ `5/3` log 2 = `2/3` log `"P"_"f"/"p"_"i"`

∴ `5/3xx0.3010 = 2/3` log `(("P"_"f")/"P"_"i")`

∴ (2.5) (0.3010) = log `(("P"_"f")/("P"_"i"))`

∴ 0.7525 = log `("P"_"f"/"P"_"i")`

∴ `("P"_"f")/"P"_"i"` = antilog 0.7525 = 5.656

This is the ratio of the final pressure (Pf) to the initial pressure (Pi).

shaalaa.com

Solution 2

Given: Tf = 2Ti, `"P"_"f"/"P"_"i"` = ?

Formula: 

`"P"_"f"/"P"_"i" = (("T"_"f")/("T"_"i"))^(gamma/(gamma - 1))`

∴ `"P"_"f"/"P"_"i" = ((2"T"_"i")/("T"_"i"))^((5"/"3)/(5"/"3 - 1))` ............`(∵ "For mono-atomic gas", gamma = 5/3)`

∴ `"P"_"f"/"P"_"i" = 2^2.5`

∴ `"P"_"f"/"P"_"i" = 5.6568`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Thermodynamics - Exercises [Page 108]

APPEARS IN

Balbharati Physics [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Thermodynamics
Exercises | Q 9 | Page 108
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×