Advertisements
Advertisements
प्रश्न
An integrating factor of the differential equation `x/y ("d"y)/("d"x) + log x = ("e"^x x^(-tanx))/y, (x > 0)`, is ______.
विकल्प
`x^logx`
`(sqrt(x))^logx`
`(sqrt("e"))^logx`
`"e"^(x^2)`
MCQ
रिक्त स्थान भरें
उत्तर
An integrating factor of the differential equation `x/y ("d"y)/("d"x) + log x = ("e"^x x^(-tanx))/y, (x > 0)`, is `(sqrt(x))^logx`.
Explanation:
`x/y ("d"y)/("d"x) + log x = ("e"^x x^(-tanx))/y`
⇒ `("d"y)/("d"x) + logx/x*y = "e"^x x^-tanx`
∴ I.F. = `"e"^(int logx/x "d"x)`
= `"e"^(1/2(logx)^2`
= `("e"^(1/2 logx))^logx` ......[∵ (am)n = amn]
= `(sqrt(x))^logx`
shaalaa.com
Derivative of Implicit Functions
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?