Advertisements
Advertisements
Question
An integrating factor of the differential equation `x/y ("d"y)/("d"x) + log x = ("e"^x x^(-tanx))/y, (x > 0)`, is ______.
Options
`x^logx`
`(sqrt(x))^logx`
`(sqrt("e"))^logx`
`"e"^(x^2)`
MCQ
Fill in the Blanks
Solution
An integrating factor of the differential equation `x/y ("d"y)/("d"x) + log x = ("e"^x x^(-tanx))/y, (x > 0)`, is `(sqrt(x))^logx`.
Explanation:
`x/y ("d"y)/("d"x) + log x = ("e"^x x^(-tanx))/y`
⇒ `("d"y)/("d"x) + logx/x*y = "e"^x x^-tanx`
∴ I.F. = `"e"^(int logx/x "d"x)`
= `"e"^(1/2(logx)^2`
= `("e"^(1/2 logx))^logx` ......[∵ (am)n = amn]
= `(sqrt(x))^logx`
shaalaa.com
Derivative of Implicit Functions
Is there an error in this question or solution?