English

An integrating factor of the differential equation ddexydydx+logx=exx-tanxy,(x>0), is ______. -

Advertisements
Advertisements

Question

An integrating factor of the differential equation `x/y ("d"y)/("d"x) + log x = ("e"^x x^(-tanx))/y, (x > 0)`, is ______.

Options

  • `x^logx`

  • `(sqrt(x))^logx`

  • `(sqrt("e"))^logx`

  • `"e"^(x^2)`

MCQ
Fill in the Blanks

Solution

An integrating factor of the differential equation `x/y ("d"y)/("d"x) + log x = ("e"^x x^(-tanx))/y, (x > 0)`, is `(sqrt(x))^logx`.

Explanation:

`x/y ("d"y)/("d"x) + log x = ("e"^x x^(-tanx))/y`

⇒ `("d"y)/("d"x) + logx/x*y = "e"^x x^-tanx`

∴ I.F. = `"e"^(int logx/x  "d"x)`

= `"e"^(1/2(logx)^2`

= `("e"^(1/2 logx))^logx`  ......[∵ (am)n = amn]

= `(sqrt(x))^logx`

shaalaa.com
Derivative of Implicit Functions
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×