हिंदी

Answer in brief. Using differential equations of linear S.H.M, obtain the expression for (a) velocity in S.H.M., (b) acceleration in S.H.M. - Physics

Advertisements
Advertisements

प्रश्न

Answer in brief.

Using differential equations of linear S.H.M, obtain the expression for (a) velocity in S.H.M., (b) acceleration in S.H.M.

State the differential equation of linear S.H.M. Hence, obtain the expression for:

  1. acceleration
  2. velocity
संक्षेप में उत्तर

उत्तर

Differential equation of SHM

∴ `(d^2x)/(dt^2) + omega^2.x = 0` ............(i)

(a) Obtaining expression for acceleration:

`(d^2x)/(dt^2) = -omega^2.x` ........[From (i)]

But `a = (d^2x)/(dt^2)` is the acceleration of the particle performing SHM.

∴ a = `-omega^2.x`

This is the expression for acceleration.

(b) Obtaining expression for velocity:

`(d^2x)/(dt^2) = -omega^2.x` ..............[From (i)]

∴ `d/dt((dx)/(dt)) = -omega^2.x`

∴ `(d"v")/(dt) = -omega^2.x`

∴ `(d"v")/(dx)(dx)/(dt) = -omega^2.x`

∴ v`(d"v")/(dx) = -omega^2.x`

∴ v.dv = -ω2.x.dx

Integrating both sides, we get

`int"v".d"v" = -omega^2intx.dx`

∴ `"v"^2/2 = -omega^2.x^2/2 + C` ...........(iii)

Where C is the constant of integration.

Let A be the maximum displacement (amplitude) of the particle in SHM.

When the particle is at an extreme position, velocity (v) is zero,

Thus, at x = ±A, v = 0,

Substituting v = 0 and x = ±A in equation (ii), we get

∴ `0 = -omega^2. A^2/2 + C`

∴ C = `omega^2.A^2/2`

Using the value of C in equation (ii), we get

∴ `"v"^2/2 = -omega^2.x^2/2 + omega^2.A^2/2`

∴ `"v"^2 = omega^2(A^2 - x^2)`

∴ v = `±omegasqrt(A^2 - x^2)`

This is the expression for velocity.

shaalaa.com
Acceleration (a), Velocity (v) and Displacement (x) of S.H.M.
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Oscillations - Exercises [पृष्ठ १२९]

APPEARS IN

बालभारती Physics [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Oscillations
Exercises | Q 2.2 | पृष्ठ १२९

संबंधित प्रश्न

Find the change in length of a second’s pendulum, if the acceleration due to gravity at the place changes from 9.75 m/s2 to 9.8 m/s2.


Acceleration of a particle executing S.H.M. at its mean position.


A particle is performing S.H.M. of amplitude 5 cm and period of 2s. Find the speed of the particle at a point where its acceleration is half of its maximum value.


Using the differential equation of linear S.H.M., obtain an expression for acceleration, velocity, and displacement of simple harmonic motion. 


Two identical wires of substances 'P' and 'Q ' are subjected to equal stretching force along the length. If the elongation of 'Q' is more than that of 'P', then ______.


The displacement of a particle from its mean position (in metre) is given by, y = 0.2 sin(10 πt + 1.5π) cos(10 πt + 1.5π).

The motion of particle is ____________.


A wheel of M.I. 50 kg m2 starts rotating on applying a constant torque of 200 Nm. Its angular velocity after 2.5 second from the start is ______.


A body performing a simple harmonic motion has potential energy 'P1' at displacement 'x1' Its potential energy is 'P2' at displacement 'x2'. The potential energy 'P' at displacement (x1 + x2) is ________.


The relation between time and displacement for two particles is given by Y1 = 0.06 sin 27`pi` (0.04t + `phi_1`), y2 = 0.03sin 27`pi`(0.04t +  `phi_2`). The ratio of the intensity of the waves produced by the vibrations of the two particles will be ______.


The distance covered by a particle undergoing SHM in one time period is (amplitude = A) ____________.


A particle executing S.H.M. has amplitude 0.01 m and frequency 60 Hz. The maximum acceleration of the particle is ____________.


The length of the second's pendulum is decreased by 0.3 cm when it is shifted from place A to place B. If the acceleration due to gravity at place A is 981 cm/s2, the acceleration due to gravity at place B is ______ (Take π2 = 10)


A body is executing S.H.M. Its potential energy is E1 and E2 at displacements x and y respectively. The potential energy at displacement (x + y) is ______.


The displacements of two particles executing simple harmonic motion are represented as y1 = 2 sin (10t + θ) and y2 = 3 cos 10t. The phase difference between the velocities of these waves is ______.


A particle performs linear SHM at a particular instant, velocity of the particle is 'u' and acceleration is a while at another instant velocity is 'v' and acceleration is 'β (0 < α < β). The distance between the two position is ______.


In figure, a particle is placed at the highest point A of a smooth sphere of radius r. It is given slight push and it leaves the sphere at B, at a depth h vertically below A, such that h is equal to ______.


A spring of force constant of 400 N/m is loaded with a mass of 0.25 kg. The amplitude of oscillations is 4 cm. When mass comes to the equilibrium position. Its velocity is ______.


A particle of mass 5 kg moves in a circle of radius 20 cm. Its linear speed at a time t is given by v = 4t, t is in the second and v is in ms-1. Find the net force acting on the particle at t = 0.5 s.


The displacement of a particle of mass 3 g executing simple harmonic motion is given by Y = 3 sin (0.2 t) in SI units. The kinetic energy of the particle at a point which is at a distance equal to `1/3`​ of its amplitude from its mean position is ______.


A body of mass 0.5 kg travels in a straight line with velocity v = ax3/2 where a = 5 m–1/2s–1. The change in kinetic energy during its displacement from x = 0 to x = 2 m is ______.


In the given figure, a = 15 m/s2 represents the total acceleration of a particle moving in the clockwise direction on a circle of radius R = 2.5 m at a given instant of time. The speed of the particle is ______.


Calculate the velocity of a particle performing S.H.M. after 1 second, if its displacement is given by x = `5sin((pit)/3)`m.


For a particle performing circular motion, when is its angular acceleration directed opposite to its angular velocity?


State the expressions for the displacement, velocity and acceleration draw performing linear SHM, starting from the positive extreme position. Hence, their graphs with respect to time.


Which one of the following is not a characteristics of SHM?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×