हिंदी

Answer the following question. Show that vectors a→=2i^+5j^-6k^andb→=i^+52j^-3k^ are parallel. - Physics

Advertisements
Advertisements

प्रश्न

Answer the following question.

Show that vectors `vec"a" = 2hat"i" + 5hat"j" - 6hat"k" and vec"b" = hat"i" + 5/2 hat"j" - 3hat"k"` are parallel.

योग

उत्तर

Let the angle between the two vectors be θ.

∴ cos θ = `(vec"a" * vec"b")/(|vec"a"||vec"b"|)`

`= ((2hat"i" + 5hat"j" - 6hat"k")*(hat"i" + 5/2hat"j" - 3hat"k"))/(sqrt(2^2 + 5^2 + (-6)^2)xxsqrt(1^2 + (5/2)^2 + (-3)^2))`

`= (2 + 25/2 + 18)/(sqrt65 xx sqrt(65//4))`

`= (65//2)/(65//2) = 1`

⇒ θ = cos-1 (1) = 0°

⇒ Two vectors are parallel.

Alternate method:

`vec"a" = 2hat"i" + 5hat"j" - 6hat"k" = 2 (hat"i" + 5/2hat"j" - 3hat"k") = 2 vec"b"`

Since `vec"a"` is a scalar multiple of `vec"b"`, the vectors are parallel.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Mathematical Methods - Exercises [पृष्ठ २९]

APPEARS IN

बालभारती Physics [English] 11 Standard Maharashtra State Board
अध्याय 2 Mathematical Methods
Exercises | Q 2. (v) | पृष्ठ २९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×