Advertisements
Advertisements
प्रश्न
Assertion (A): The HCF of two numbers is 5 and their product is 150. Then their LCM is 40.
Reason(R): For any two positive integers a and b, HCF (a, b) × LCM (a, b) = a × b.
विकल्प
Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
Assertions (A) is true but reason (R) is false.
Assertions (A) is false but reason (R) is true.
उत्तर
Assertions (A) is false but reason (R) is true.
Explanation:
Assertion: Given that, HCF = 5
LCM = 40
Product of numbers = 150
We know that,
HCF × LCM = Product of numbers
HCF × LCM = 5 × 40
= 200 is not equal to the product
So, Assertion is false
Reason: For any two positive integers a and b, HCF (a, b) × LCM (a, b) = a × b.
Hence, Assertion is false but reason is true.
APPEARS IN
संबंधित प्रश्न
Find the LCM and HCF of the following pair of integers and verify that LCM × HCF = Product of the two numbers.
26 and 91
Find the LCM and HCF of the following integers by applying the prime factorisation method:
40, 36 and 126
Write down the decimal expansions of the following rational numbers by writing their denominators in the form 2m × 5n, where, m, n are non-negative integers. \[\frac{3}{8}\]
Find the LCM and HCF of the following pair of integers and verify that LCM × HCF = product of the two numbers.
510 and 92
Find the LCM and HCF of the following integers by applying the prime factorisation method.
8, 9 and 25
For what value of natural number n, 4n can end with the digit 6?
If p1x1 × p2x2 × p3x3 × p4x4 = 113400 where p1, p2, p3, p4 are primes in ascending order and x1, x2, x3, x4, are integers, find the value of p1, p2, p3, p4 and x1, x2, x3, x4
According to the fundamental theorem of arithmetic, if T (a prime number) divides b2, b > 0, then ______.
If LCM(x, 18) = 36 and HCF(x, 18) = 2, then x is ______.
For some integer q, every odd integer is of the form ______.