Advertisements
Advertisements
प्रश्न
By equating coefficients of variables, solve the following equation.
5x + 7y = 17 ; 3x - 2y = 4
उत्तर
5x + 7y = 17 ...(I)
3x - 2y = 4 ...(II)
Multiply (I) with 3 and (II) with 5
15x + 21y = 51 ...(III)
15x - 10y = 20 ...(IV)
Subtracting (IV) from (III) we get,
15x + 21y = 51
15x - 10y = 20
- + -
31y = 31
⇒ y = 1
Putting this value of y in (I) we get
∴ 5x + 7y = 17
5x + 7 × 1 = 17
⇒ 5x = 10
⇒ x = 2
Thus, x = 2, y = 1
APPEARS IN
संबंधित प्रश्न
Solve the following system of equations by using the method of elimination by equating the co-efficients.
`\frac { x }{ y } + \frac { 2y }{ 5 } + 2 = 10; \frac { 2x }{ 7 } – \frac { 5 }{ 2 } + 1 = 9`
The sum of a two-digit number and the number formed by reversing the order of digit is 66. If the two digits differ by 2, find the number. How many such numbers are there?
Solve the following simultaneous equation.
x − 2y = −2 ; x + 2y = 10
Solve the following simultaneous equation.
`2/x + 3/y = 13` ; `5/x - 4/y = -2`
A fraction becomes `1/3` when 2 is subtracted from the numerator and it becomes `1/2` when 1 is subtracted from the denominator. Find the fraction.
A fraction becomes `(1)/(3)` when 2 is subtracted from the numerator and it becomes `(1)/(2)` when 1 is subtracted from the denominator. Find the fraction.
If 52x + 65y = 183 and 65x + 52y = 168, then find x + y = ?
The ratio of two numbers is 2:3. If 5 is added in each numbers, then the ratio becomes 5:7 find the numbers.
The ratio of two numbers is 2:3.
So, let the first number be 2x and the second number be `square`.
From the given condition,
`((2x) + square)/(square + square) = square/square`
`square (2x + square) = square (square + square)`
`square + square = square + square`
`square - square = square - square`
`- square = - square`
x = `square`
So, The first number = `2 xx square = square`
and, Second number = `3 xx square = square`
Hence, the two numbers are `square` and `square`
Read the following passage:
Two schools 'P' and 'Q' decided to award prizes to their students for two games of Hockey ₹ x per student and Cricket ₹ y per student. School 'P' decided to award a total of ₹ 9,500 for the two games to 5 and 4 Students respectively; while school 'Q' decided to award ₹ 7,370 for the two games to 4 and 3 students respectively.![]() |
Based on the above information, answer the following questions:
- Represent the following information algebraically (in terms of x and y).
- (a) What is the prize amount for hockey?
OR
(b) Prize amount on which game is more and by how much? - What will be the total prize amount if there are 2 students each from two games?
Rehana went to a bank to withdraw ₹ 2000. She asked the cashier to give her ₹ 50 and ₹ 100 notes only. Rehana got 25 notes in all. Find how many notes of ₹ 50 and ₹ 100 did she received.