Advertisements
Advertisements
प्रश्न
By evaluating ∫i2Rdt, show that when a capacitor is charged by connecting it to a battery through a resistor, the energy dissipated as heat equals the energy stored in the capacitor.
उत्तर
The growth of charge on the capacitor at time t ,
\[Q = Q_0 \left( 1 - e^{- \frac{t}{RC}} \right)\]
\[i = \frac{dQ}{dt} = \left( \frac{Q_0}{RC} \right) e^{- \frac{t}{RC}}\]
Heat dissipated during time t1 to t2,
\[U = \int_{t_1}^{t_2} i^2 Rdt\]
\[ = \frac{{Q_0}^2}{2C}\left( e^{- \frac{2 t_1}{RC}} - e^{- \frac{2 t_2}{RC}} \right)\]
\[ \because Q_0 = C V_{0,} \]
\[ U = \frac{1}{2}C {V_0}^2 \left( e^{- \frac{2 t_1}{RC}} - e^{- \frac{2 t_2}{RC}} \right)\]
The potential difference across a capacitor at any time t,
\[V = V_0 \left( 1 - e^{- \frac{t}{RC}} \right)\]
The energy stored in the capacitor at any time t,
\[E = \frac{1}{2}C V^2 = \frac{1}{2}C {V_0}^2 \left( 1 - e^{- \frac{2t}{RC}} \right)^2\]
∴ The energy stored in the capacitor from t1 to t2,
\[E = \frac{1}{2}C {V_0}^2 \left( e^{- \frac{2 t_1}{RC}} \right) - \frac{1}{2}C {V_0}^2 \left( 1 - e^{- \frac{2 t_2}{RC}} \right)\]
\[ \Rightarrow E = \frac{1}{2}C {V_0}^2 \left( e^{- \frac{2 t_1}{RC}} - e^{- \frac{2 t_2}{RC}} \right)\]
APPEARS IN
संबंधित प्रश्न
A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor?
Find the charge on the capacitor as shown in the circuit.
A 100 μF capacitor is joined to a 24 V battery through a 1.0 MΩ resistor. Plot qualitative graphs (a) between current and time for the first 10 minutes and (b) between charge and time for the same period.
How many time constants will elapse before the charge on a capacitors falls to 0.1% of its maximum value in a discharging RC circuit?
A capacitor of capacitance C is connected to a battery of emf ε at t = 0 through a resistance R. Find the maximum rate at which energy is stored in the capacitor. When does the rate have this maximum value?
A capacitor with stored energy 4⋅0 J is connected with an identical capacitor with no electric field in between. Find the total energy stored in the two capacitors.
A capacitor of capacitance 100 μF is connected across a battery of emf 6 V through a resistance of 20 kΩ for 4 s. The battery is then replaced by a thick wire. What will be the charge on the capacitor 4 s after the battery is disconnected?
Consider the situation shown in figure. The switch is closed at t = 0 when the capacitors are uncharged. Find the charge on the capacitor C1 as a function of time t.
A metal sphere of radius R is charged to a potential V.
- Find the electrostatic energy stored in the electric field within a concentric sphere of radius 2 R.
- Show that the electrostatic field energy stored outside the sphere of radius 2 R equals that stored within it.
Figure shows two identical parallel plate capacitors connected to a battery through a switch S. Initially, the switch is closed so that the capacitors are completely charged. The switch is now opened and the free space between the plates of the capacitors is filled with a dielectric of dielectric constant 3. Find the ratio of the initial total energy stored in the capacitors to the final total energy stored.
Choose the correct option:
Energy stored in a capacitor and dissipated during charging a capacitor bear a ratio.
What fraction of the energy drawn from the charging battery is stored in a capacitor?
A parallel plate capacitor has a uniform electric field ‘`vec "E"`’ in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______
(ε0 = permittivity of free space)
A parallel plate capacitor has a uniform electric field `overset(->)("E")` in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______
(ε0 = permittivity of free space)
Do free electrons travel to region of higher potential or lower potential?
A parallel plate capacitor (A) of capacitance C is charged by a battery to voltage V. The battery is disconnected and an uncharged capacitor (B) of capacitance 2C is connected across A. Find the ratio of total electrostatic energy stored in A and B finally and that stored in A initially.
Electrostatic energy of 4 x 10−4 J is stored in a charged 25 pF capacitor. Find the charge on the capacitor.