हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Consider the Situation Shown in Figure. the Switch is Closed at T = 0 When the Capacitors Are Uncharged. Find the Charge on the Capacitor C1 As a Function of Time T. - Physics

Advertisements
Advertisements

प्रश्न

Consider the situation shown in figure. The switch is closed at t = 0 when the capacitors are uncharged. Find the charge on the capacitor C1 as a function of time t.

योग

उत्तर

The two capacitors are connected in series. Their equivalent capacitance,

\[C_{eqv} = \frac{C_1 C_2}{C_1 + C_2}\]

The growth of charge in the capacitors,

\[q =  C_{eqv}   \epsilon\left( 1 - e^{- \frac{1}{r C_{eqv}}} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Electric Current in Conductors - Exercises [पृष्ठ २०३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 10 Electric Current in Conductors
Exercises | Q 82 | पृष्ठ २०३

संबंधित प्रश्न

Obtain the expression for the energy stored per unit volume in a charged parallel plate capacitor.


In the following arrangement of capacitors, the energy stored in the 6 µF capacitor is E. Find the value of the following :
(i) Energy stored in 12 µF capacitor.
(ii) Energy stored in 3 µF capacitor.
(iii) Total energy drawn from the battery.


A capacitor of capacitance 500 μF is connected to a battery through a 10 kΩ resistor. The charge stored in the capacitor in the first 5 s is larger than the charge stored in the next.

(a) 5 s

(b) 50 s

(c) 500 s

(d) 500 s


A capacitor C1 of capacitance 1 μF and a capacitor C2 of capacitance 2 μF are separately charged by a common battery for a long time. The two capacitors are then separately discharged through equal resistors. Both the discharge circuits are connected at t = 0.

(a) The current in each of the two discharging circuits is zero at t = 0.

(b) The currents in  the two discharging circuits at t = 0 are equal but not zero.

(c) The currents in the two discharging circuits at t = 0 are unequal.

(d) C1 loses 50% of its initial charge sooner than C2 loses 50% of its initial charge.


How many time constants will elapse before the current in a charging RC circuit drops to half of its initial value? Answer the same question for a discharging RC circuit.


Two capacitors of capacitances 4⋅0 µF and 6⋅0 µF are connected in series with a battery of 20 V. Find the energy supplied by the battery.


A capacitance C charged to a potential difference V is discharged by connecting its plates through a resistance R. Find the heat dissipated in one time constant after the connections are made. Do this by calculating ∫ i2R dt and also by finding the decrease in the energy stored in the capacitor.


Each capacitor in figure has a capacitance of 10 µF. The emf of the battery is 100 V. Find the energy stored in each of the four capacitors.


A capacitor of capacitance C is given a charge Q. At t = 0, it is connected to an uncharged capacitor of equal capacitance through a resistance R. Find the charge on the second capacitor as a function of time.


A metal sphere of radius R is charged to a potential V.

  1. Find the electrostatic energy stored in the electric field within a concentric sphere of radius 2 R.
  2. Show that the electrostatic field energy stored outside the sphere of radius 2 R equals that stored within it.

A large conducting plane has a surface charge density `1.0 xx 10^-4  "Cm"^-2` . Find the electrostatic energy stored in a cubical volume of edge 1⋅0 cm in front of the plane.


Figure shows two identical parallel plate capacitors connected to a battery through a switch S. Initially, the switch is closed so that the capacitors are completely charged. The switch is now opened and the free space between the plates of the capacitors is filled with a dielectric of dielectric constant 3. Find the ratio of the initial total energy stored in the capacitors to the final total energy stored.


A capacitor is charged by a battery and energy stored is 'U'. Now the battery is removed and the distance between plates is increased to four times. The energy stored becomes ______.


A 2µF capacitor is charge to 100 volt and then its plate are connected by a conducting wire. The heat produced is:-


Do free electrons travel to region of higher potential or lower potential?


Prove that, if an insulated, uncharged conductor is placed near a charged conductor and no other conductors are present, the uncharged body must be intermediate in potential between that of the charged body and that of infinity.


A parallel plate capacitor (A) of capacitance C is charged by a battery to voltage V. The battery is disconnected and an uncharged capacitor (B) of capacitance 2C is connected across A. Find the ratio of total electrostatic energy stored in A and B finally and that stored in A initially.


Electrostatic energy of 4 x 10−4 J is stored in a charged 25 pF capacitor. Find the charge on the capacitor.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×