Advertisements
Advertisements
प्रश्न
A capacitor of capacitance 500 μF is connected to a battery through a 10 kΩ resistor. The charge stored in the capacitor in the first 5 s is larger than the charge stored in the next.
(a) 5 s
(b) 50 s
(c) 500 s
(d) 500 s
उत्तर
(a) 5 s
(b) 50 s
(c) 500 s
(d) 500 s
The charge (Q) on the capacitor at any instant t,
\[Q = CV(1 - e^{- t/RC} )\]
where
C = capacitance of the given capacitance
R = resistance of the resistor connected in series with the capacitor
RC = (10 × 103) × (500 × 10-6) = 5 s
The charge on the capacitor in the first 5 seconds,
\[Q_0 = CV(1 - e^{- 5/5} ) = CV \times 0 . 632 \]
The charge on the capacitor in the first 10 seconds,
\[Q_1 = CV(1 - e^{- 10/5} )\]
\[ Q_1 = CV(1 - e^{- 2} ) = 0 . 864 \times CV\]
Charge developed in the next 5 seconds,
Q' = Q1 - Q0
Q' = CV(0.864 - 0.632) = 0.232 CV
The charge on the capacitor in the first 55 seconds,
\[Q_2 = CV(1 - e^{- 55/5} )\]
\[ Q_2 = CV(1 - e^{- 11} ) = 0 . 99 \times CV\]
Charge developed in the next 50 seconds,
Q' = Q2 - Q0
Q' = CV(0.99 - 0.632) = 0.358 CV
Charge developed in the first 505 seconds,
\[Q_3 = CV(1 - e^{- 500/5} ) = CV(1 - e^{- 100} ) \approx CV\]
Charge developed in the next 500 seconds,
Q' = CV (1 - 0.632) = 0.368 CV
Thus, the charge developed on the capacitor in the first 5 seconds is greater than the charge developed in the next 5,50, 500 seconds.
Notes
Out of the four given options, two options are same.
APPEARS IN
संबंधित प्रश्न
A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?
In the following arrangement of capacitors, the energy stored in the 6 µF capacitor is E. Find the value of the following :
(i) Energy stored in 12 µF capacitor.
(ii) Energy stored in 3 µF capacitor.
(iii) Total energy drawn from the battery.
A capacitor C1 of capacitance 1 μF and a capacitor C2 of capacitance 2 μF are separately charged by a common battery for a long time. The two capacitors are then separately discharged through equal resistors. Both the discharge circuits are connected at t = 0.
(a) The current in each of the two discharging circuits is zero at t = 0.
(b) The currents in the two discharging circuits at t = 0 are equal but not zero.
(c) The currents in the two discharging circuits at t = 0 are unequal.
(d) C1 loses 50% of its initial charge sooner than C2 loses 50% of its initial charge.
Find the charge on the capacitor shown in the figure.
The plates of a capacitor of capacitance 10 μF, charged to 60 μC, are joined together by a wire of resistance 10 Ω at t = 0. Find the charge on the capacitor in the circuit at (a) t = 0 (b) t = 30 μs (c) t = 120 μs and (d) t = 1.0 ms.
A 100 μF capacitor is joined to a 24 V battery through a 1.0 MΩ resistor. Plot qualitative graphs (a) between current and time for the first 10 minutes and (b) between charge and time for the same period.
A capacitor of capacitance C is connected to a battery of emf ε at t = 0 through a resistance R. Find the maximum rate at which energy is stored in the capacitor. When does the rate have this maximum value?
By evaluating ∫i2Rdt, show that when a capacitor is charged by connecting it to a battery through a resistor, the energy dissipated as heat equals the energy stored in the capacitor.
Find the charge on each of the capacitors 0.20 ms after the switch S is closed in the figure.
A point charge Q is placed at the origin. Find the electrostatic energy stored outside the sphere of radius R centred at the origin.
A large conducting plane has a surface charge density `1.0 xx 10^-4 "Cm"^-2` . Find the electrostatic energy stored in a cubical volume of edge 1⋅0 cm in front of the plane.
Choose the correct option:
Energy stored in a capacitor and dissipated during charging a capacitor bear a ratio.
A capacitor is a device that stores ____________.
If the p. d. across a capacitor is increased from 10 V to 30 V, then the energy stored with the capacitor ____________.
A parallel plate capacitor has a uniform electric field ‘`vec "E"`’ in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______
(ε0 = permittivity of free space)
Do free electrons travel to region of higher potential or lower potential?
A fully charged capacitor C with initial charge q0 is connected to a coil of self-inductance L at t = 0. The time at which the energy is stored equally between the electric and magnetic fields is ______.
Electrostatic energy of 4 x 10−4 J is stored in a charged 25 pF capacitor. Find the charge on the capacitor.