हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Find the Charge on Each of the Capacitors 0.20 Ms After the Switch S is Closed in the Figure. - Physics

Advertisements
Advertisements

प्रश्न

Find the charge on each of the capacitors 0.20 ms after the switch S is closed in the figure.

योग

उत्तर

The equivalent capacitance of the circuit,

\[C_{eqv} = C_1 + C_2 = 2 + 2 = 4 \mu F\]

The growth of charge through the capacitor,

q = q0(1 − e−t/RC)

\[q_0 = CV = 4 \times {10}^{- 6} \times 6 = 24 \times {10}^{- 6} C\]

\[\frac{t}{RC} = \frac{0 . 20 \times {10}^{- 3}}{25 \times 4 \times {10}^{- 6}} = 2\]

⇒ q = 24 × 10−6 (1 − e−2)

       = 18.4 × 10−6 C

This is the total charge on both capacitors. As the capacitors are in parallel, the total charge will be shared between them. Also, both the capacitors are of same capacitance; so, they will share equal amount of charge.

∴ Charge on each capacitor \[= \frac{18 . 4}{2} \mu C = 9 . 2 \mu C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Electric Current in Conductors - Exercises [पृष्ठ २०३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 10 Electric Current in Conductors
Exercises | Q 79 | पृष्ठ २०३

संबंधित प्रश्न

The energy density in the electric field created by a point charge falls off with the distance from the point charge as


A capacitor C1 of capacitance 1 μF and a capacitor C2 of capacitance 2 μF are separately charged by a common battery for a long time. The two capacitors are then separately discharged through equal resistors. Both the discharge circuits are connected at t = 0.

(a) The current in each of the two discharging circuits is zero at t = 0.

(b) The currents in  the two discharging circuits at t = 0 are equal but not zero.

(c) The currents in the two discharging circuits at t = 0 are unequal.

(d) C1 loses 50% of its initial charge sooner than C2 loses 50% of its initial charge.


(a) Find the current in the 20 Ω resistor shown in the figure. (b) If a capacitor of capacitance 4 μF is joined between the points A and B, what would be the electrostatic energy stored in it in steady state?


A capacitance C, a resistance R and an emf ε are connected in series at t = 0. What is the maximum value of (a) the potential difference across the resistor (b) the current in the circuit (c) the potential difference across the capacitor (d) the energy stored in the capacitor (e) the power delivered by the battery and (f) the power converted into heat?


How many time constants will elapse before the current in a charging RC circuit drops to half of its initial value? Answer the same question for a discharging RC circuit.


How many time constants will elapse before the charge on a capacitors falls to 0.1% of its maximum value in a discharging RC circuit?


Consider the situation shown in figure. The switch is closed at t = 0 when the capacitors are uncharged. Find the charge on the capacitor C1 as a function of time t.


A point charge Q is placed at the origin. Find the electrostatic energy stored outside the sphere of radius R centred at the origin.


Answer the following question.
Obtain the expression for the energy stored in a capacitor connected across a dc battery. Hence define energy density of the capacitor


Choose the correct option:

Energy stored in a capacitor and dissipated during charging a capacitor bear a ratio.


A capacitor is a device that stores ____________.


A parallel plate condenser is immersed in an oil of dielectric constant 2. The field between the plates is ______.


A capacitor is charged by a battery and energy stored is 'U'. Now the battery is removed and the distance between plates is increased to four times. The energy stored becomes ______.


A parallel plate capacitor has a uniform electric field ‘`vec "E"`’ in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______

0 = permittivity of free space)


A parallel plate capacitor has a uniform electric field `overset(->)("E")` in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______

0 = permittivity of free space)


Do free electrons travel to region of higher potential or lower potential?


A parallel plate capacitor (A) of capacitance C is charged by a battery to voltage V. The battery is disconnected and an uncharged capacitor (B) of capacitance 2C is connected across A. Find the ratio of total electrostatic energy stored in A and B finally and that stored in A initially.


Electrostatic energy of 4 x 10−4 J is stored in a charged 25 pF capacitor. Find the charge on the capacitor.


Derive an expression for energy stored in a capacitor.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×