मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Find the Charge on Each of the Capacitors 0.20 Ms After the Switch S is Closed in the Figure. - Physics

Advertisements
Advertisements

प्रश्न

Find the charge on each of the capacitors 0.20 ms after the switch S is closed in the figure.

बेरीज

उत्तर

The equivalent capacitance of the circuit,

\[C_{eqv} = C_1 + C_2 = 2 + 2 = 4 \mu F\]

The growth of charge through the capacitor,

q = q0(1 − e−t/RC)

\[q_0 = CV = 4 \times {10}^{- 6} \times 6 = 24 \times {10}^{- 6} C\]

\[\frac{t}{RC} = \frac{0 . 20 \times {10}^{- 3}}{25 \times 4 \times {10}^{- 6}} = 2\]

⇒ q = 24 × 10−6 (1 − e−2)

       = 18.4 × 10−6 C

This is the total charge on both capacitors. As the capacitors are in parallel, the total charge will be shared between them. Also, both the capacitors are of same capacitance; so, they will share equal amount of charge.

∴ Charge on each capacitor \[= \frac{18 . 4}{2} \mu C = 9 . 2 \mu C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Electric Current in Conductors - Exercises [पृष्ठ २०३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 10 Electric Current in Conductors
Exercises | Q 79 | पृष्ठ २०३

संबंधित प्रश्‍न

Obtain the expression for the energy stored per unit volume in a charged parallel plate capacitor.


Explain what would happen if the capacitor given in previous question a 3 mm thick mica sheet (of dielectric constant = 6) were inserted between the plates,

  1. While the voltage supply remained connected.
  2. After the supply was disconnected.

Find the charge on the capacitor as shown in the circuit.


The energy density in the electric field created by a point charge falls off with the distance from the point charge as


A capacitance C, a resistance R and an emf ε are connected in series at t = 0. What is the maximum value of (a) the potential difference across the resistor (b) the current in the circuit (c) the potential difference across the capacitor (d) the energy stored in the capacitor (e) the power delivered by the battery and (f) the power converted into heat?


A 100 μF capacitor is joined to a 24 V battery through a 1.0 MΩ resistor. Plot qualitative graphs (a) between current and time for the first 10 minutes and (b) between charge and time for the same period.


How many time constants will elapse before the current in a charging RC circuit drops to half of its initial value? Answer the same question for a discharging RC circuit.


How many time constants will elapse before the charge on a capacitors falls to 0.1% of its maximum value in a discharging RC circuit?


How many time constants will elapse before the energy stored in the capacitor reaches half of its equilibrium value in a charging RC circuit?


A capacitor of capacitance C is connected to a battery of emf ε at t = 0 through a resistance R. Find the maximum rate at which energy is stored in the capacitor. When does the rate have this maximum value?


Each capacitor in figure has a capacitance of 10 µF. The emf of the battery is 100 V. Find the energy stored in each of the four capacitors.


A capacitor of capacitance 100 μF is connected across a battery of emf 6 V through a resistance of 20 kΩ for 4 s. The battery is then replaced by a thick wire. What will be the charge on the capacitor 4 s after the battery is disconnected?


A capacitor of capacitance C is given a charge Q. At t = 0, it is connected to an uncharged capacitor of equal capacitance through a resistance R. Find the charge on the second capacitor as a function of time.


A capacitor of capacitance C is given a charge Q. At t = 0, it is connected to an ideal battery of emf ε through a resistance R. Find the charge on the capacitor at time t.


Answer the following question.
Obtain the expression for the energy stored in a capacitor connected across a dc battery. Hence define energy density of the capacitor


A parallel plate condenser is immersed in an oil of dielectric constant 2. The field between the plates is ______.


A parallel plate capacitor has a uniform electric field `overset(->)("E")` in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______

0 = permittivity of free space)


A fully charged capacitor C with initial charge q0​ is connected to a coil of self-inductance L at t = 0. The time at which the energy is stored equally between the electric and magnetic fields is ______.


In a capacitor of capacitance 20 µF, the distance between the plates is 2 mm. If a dielectric slab of width 1 mm and dielectric constant 2 is inserted between the plates, what is the new capacitance?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×