Advertisements
Advertisements
प्रश्न
Explain what would happen if the capacitor given in previous question a 3 mm thick mica sheet (of dielectric constant = 6) were inserted between the plates,
- While the voltage supply remained connected.
- After the supply was disconnected.
उत्तर
- Dielectric constant of the mica sheet, k = 6
Initial capacitance, C = 1.771 × 10−11 F
New Capacitance, C' = kC
= 6 × 1.771 × 10−11
= 106 pF
Supply voltage, V = 100 V
New Capacitance, q' = C'V
= 6 × 1.771 × 10−9
= 1.06 × 10−8 C
Potential across the plates remains 100 V. - Dielectric constant, k = 6
Initial capacitance, C = 1.771 × 10−11 F
New Capacitance, C' = kC
= 6 × 1.771 × 10−11
= 106 pF
If the supply voltage is removed, then there will be no effect on the amount of charge in the plates.
Charge = 1.771 × 10−9 C
Potential across the plates comes from,
∴ `"V'" = "q"/"C'"`
= `(1.771 xx 10^-9)/(106 xx 10^-12)`
= 16.7 V
APPEARS IN
संबंधित प्रश्न
A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor?
The energy density in the electric field created by a point charge falls off with the distance from the point charge as
How many time constants will elapse before the current in a charging RC circuit drops to half of its initial value? Answer the same question for a discharging RC circuit.
How many time constants will elapse before the charge on a capacitors falls to 0.1% of its maximum value in a discharging RC circuit?
A capacitance C charged to a potential difference V is discharged by connecting its plates through a resistance R. Find the heat dissipated in one time constant after the connections are made. Do this by calculating ∫ i2R dt and also by finding the decrease in the energy stored in the capacitor.
A capacitor of capacitance C is given a charge Q. At t = 0, it is connected to an ideal battery of emf ε through a resistance R. Find the charge on the capacitor at time t.
A point charge Q is placed at the origin. Find the electrostatic energy stored outside the sphere of radius R centred at the origin.
A metal sphere of radius R is charged to a potential V.
- Find the electrostatic energy stored in the electric field within a concentric sphere of radius 2 R.
- Show that the electrostatic field energy stored outside the sphere of radius 2 R equals that stored within it.
A parallel plate capacitor has a uniform electric field `overset(->)("E")` in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______
(ε0 = permittivity of free space)
A fully charged capacitor C with initial charge q0 is connected to a coil of self-inductance L at t = 0. The time at which the energy is stored equally between the electric and magnetic fields is ______.