Advertisements
Advertisements
प्रश्न
A capacitance C charged to a potential difference V is discharged by connecting its plates through a resistance R. Find the heat dissipated in one time constant after the connections are made. Do this by calculating ∫ i2R dt and also by finding the decrease in the energy stored in the capacitor.
उत्तर १
Let Q0 be the initial charge on the capacitor. Then,
Q0 = CV
The charge on the capacitor at time t after the connections are made,
\[Q = Q_0 e^{- \frac{t}{RC}}\]
\[i = \frac{dQ}{dt} = - \left( \frac{Q_0}{RC} \right) e^{- \frac{t}{RC}}\]
Heat dissipated during time t1 to t2,
\[U = \int_{t_1}^{t_2} i^2 Rdt\]
\[ = \frac{{Q_0}^2}{2C}\left( e^{- \frac{2 t_1}{RC}} - e^{- \frac{2 t_2}{RC}} \right)\]
Time constant = RC
Putting t1 = 0 and t2 = RC, we get:-
\[U = \frac{{Q_0}^2}{2C}\left( e^{- 0} - e^{- 2} \right)\]
\[ \because Q_0 = CV, \]
\[ U = \frac{CV^2}{2}\left( 1 - \frac{1}{e^2} \right)\]
उत्तर २
Heat dissipated at any time = Energy stored at time 0 − Energy stored at time t
\[\Rightarrow U = \frac{1}{2}C V^2 - \frac{1}{2}C V^2 e^{- \frac{2t}{RC}} \]
\[ \because t = RC, \]
\[ U = \frac{1}{2}C V^2 - \frac{1}{2}C V^2 e^{- 2} \]
\[ \Rightarrow U = \frac{1}{2}C V^2 \left( 1 - \frac{1}{e^2} \right)\]
APPEARS IN
संबंधित प्रश्न
Explain what would happen if the capacitor given in previous question a 3 mm thick mica sheet (of dielectric constant = 6) were inserted between the plates,
- While the voltage supply remained connected.
- After the supply was disconnected.
Find the charge on the capacitor as shown in the circuit.
Find the ratio of energy stored in the two configurations if they are both connected to the same source.
A capacitor of capacitance 500 μF is connected to a battery through a 10 kΩ resistor. The charge stored in the capacitor in the first 5 s is larger than the charge stored in the next.
(a) 5 s
(b) 50 s
(c) 500 s
(d) 500 s
A 20 μF capacitor is joined to a battery of emf 6.0 V through a resistance of 100 Ω. Find the charge on the capacitor 2.0 ms after the connections are made.
A 100 μF capacitor is joined to a 24 V battery through a 1.0 MΩ resistor. Plot qualitative graphs (a) between current and time for the first 10 minutes and (b) between charge and time for the same period.
How many time constants will elapse before the charge on a capacitors falls to 0.1% of its maximum value in a discharging RC circuit?
A capacitor of capacitance 12.0 μF is connected to a battery of emf 6.00 V and internal resistance 1.00 Ω through resistanceless leads. 12.0 μs after the connections are made, what will be (a) the current in the circuit (b) the power delivered by the battery (c) the power dissipated in heat and (d) the rate at which the energy stored in the capacitor is increasing?
By evaluating ∫i2Rdt, show that when a capacitor is charged by connecting it to a battery through a resistor, the energy dissipated as heat equals the energy stored in the capacitor.
Find the charge on each of the capacitors 0.20 ms after the switch S is closed in the figure.
Each capacitor in figure has a capacitance of 10 µF. The emf of the battery is 100 V. Find the energy stored in each of the four capacitors.
Consider the situation shown in figure. The switch is closed at t = 0 when the capacitors are uncharged. Find the charge on the capacitor C1 as a function of time t.
A capacitor of capacitance C is given a charge Q. At t = 0, it is connected to an ideal battery of emf ε through a resistance R. Find the charge on the capacitor at time t.
Figure shows two identical parallel plate capacitors connected to a battery through a switch S. Initially, the switch is closed so that the capacitors are completely charged. The switch is now opened and the free space between the plates of the capacitors is filled with a dielectric of dielectric constant 3. Find the ratio of the initial total energy stored in the capacitors to the final total energy stored.
Answer the following question.
Obtain the expression for the energy stored in a capacitor connected across a dc battery. Hence define energy density of the capacitor
A capacitor is a device that stores ____________.
A fully charged capacitor C with initial charge q0 is connected to a coil of self-inductance L at t = 0. The time at which the energy is stored equally between the electric and magnetic fields is ______.
A parallel plate capacitor (A) of capacitance C is charged by a battery to voltage V. The battery is disconnected and an uncharged capacitor (B) of capacitance 2C is connected across A. Find the ratio of total electrostatic energy stored in A and B finally and that stored in A initially.
Derive an expression for energy stored in a capacitor.