मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Capacitor of Capacitance 12.0 μF is Connected to a Battery of Emf 6.00 V and Internal Resistance 1.00 ω Through Resistanceless Leads. - Physics

Advertisements
Advertisements

प्रश्न

A capacitor of capacitance 12.0 μF is connected to a battery of emf 6.00 V and internal resistance 1.00 Ω through resistanceless leads. 12.0 μs after the connections are made, what will be (a) the current in the circuit (b) the power delivered by the battery (c) the power dissipated in heat and (d) the rate at which the energy stored in the capacitor is increasing?

बेरीज

उत्तर

Given,

Capacitance of capacitor, C= 12.0 μF = 12 × 10−6 F

Emf of battery, V0 = 6.00 V

Internal resistance of battery, R = 1 Ω

Time interval, t = 12 μs


(a) Charging current in the circuit is given as,

i = i0e−t/RC

Current at, t = 12.0 μs

\[i = \frac{V_0}{R} e^{- t/RC} \]

\[i = \frac{6}{1} \times e^{- 1} \]

\[i = 2 . 207 = 2 . 21 A\]


(b) During charging, charge on the capacitor at any time ''t'' is given as

\[Q = C V_0 (1 - e^{- \frac{t}{RC}} )\]

Work done by battery in in time delivering this charge is,

W = QV0

Power deliver by the battery in time ''t'' is,

\[P = \frac{C {V_0}^2 (1 - e^{- \frac{t}{RC}} )}{t}\]

Putting, t = 12 μs

\[P = \frac{12 \times {10}^{- 6} {V_0}^2 (1 - e^{- 1} )}{12 \times {10}^{- 6}}\]

\[ \Rightarrow P = 13 . 25 W\]


(c) Energy stroed in the capacitor at any instant of time is given as,

\[U = \frac{1}{2}\frac{Q^2}{C}\]

\[ \Rightarrow U = \frac{1}{2}\frac{C^2 {V_0}^2 (1 - e^{- \frac{t}{RC}} )^2}{C}\]

\[ \Rightarrow U = \frac{1}{2}C {V_0}^2 (1 - e^{- \frac{t}{RC}} )^2\]

Rate at which the energy stored in the capacitor is,

\[\frac{dU}{dt} = \frac{1}{2}C {V_0}^2 \times 2(1 - e^{- \frac{t}{RC}} ) \times ( e^{- \frac{t}{RC}} ) \times \frac{1}{RC}\]

\[\Rightarrow \frac{dU}{dt} = \frac{{V_0}^2}{R}( e^{- \frac{t}{RC}} - e^{- \frac{2t}{RC}} )\]

\[ \Rightarrow \frac{dU}{dt} = \frac{6 \times 6}{1}( e^{- 1} - e^{- 2} )\]

\[ \Rightarrow \frac{dU}{dt} = 8 . 37 W\]

So, the power dissipated in heat = \[P - \frac{dU}{dt}= 13.25-8.37 = 4.87 W\]


(d) Rate at which the energy stored in the capacitor is increasing

\[\Rightarrow \frac{dU}{dt} = 8 . 37 W\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Electric Current in Conductors - Exercises [पृष्ठ २०३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 10 Electric Current in Conductors
Exercises | Q 75 | पृष्ठ २०३

संबंधित प्रश्‍न

A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor?


Find the charge on the capacitor as shown in the circuit.


A capacitor C1 of capacitance 1 μF and a capacitor C2 of capacitance 2 μF are separately charged by a common battery for a long time. The two capacitors are then separately discharged through equal resistors. Both the discharge circuits are connected at t = 0.

(a) The current in each of the two discharging circuits is zero at t = 0.

(b) The currents in  the two discharging circuits at t = 0 are equal but not zero.

(c) The currents in the two discharging circuits at t = 0 are unequal.

(d) C1 loses 50% of its initial charge sooner than C2 loses 50% of its initial charge.


A capacitance C, a resistance R and an emf ε are connected in series at t = 0. What is the maximum value of (a) the potential difference across the resistor (b) the current in the circuit (c) the potential difference across the capacitor (d) the energy stored in the capacitor (e) the power delivered by the battery and (f) the power converted into heat?


A 20 μF capacitor is joined to a battery of emf 6.0 V through a resistance of 100 Ω. Find the charge on the capacitor 2.0 ms after the connections are made.


A 100 μF capacitor is joined to a 24 V battery through a 1.0 MΩ resistor. Plot qualitative graphs (a) between current and time for the first 10 minutes and (b) between charge and time for the same period.


Two capacitors of capacitances 4⋅0 µF and 6⋅0 µF are connected in series with a battery of 20 V. Find the energy supplied by the battery.


Each capacitor in figure has a capacitance of 10 µF. The emf of the battery is 100 V. Find the energy stored in each of the four capacitors.


A capacitor with stored energy 4⋅0 J is connected with an identical capacitor with no electric field in between. Find the total energy stored in the two capacitors.


A capacitor of capacitance C is given a charge Q. At t = 0, it is connected to an uncharged capacitor of equal capacitance through a resistance R. Find the charge on the second capacitor as a function of time.


A metal sphere of radius R is charged to a potential V.

  1. Find the electrostatic energy stored in the electric field within a concentric sphere of radius 2 R.
  2. Show that the electrostatic field energy stored outside the sphere of radius 2 R equals that stored within it.

Choose the correct option:

Energy stored in a capacitor and dissipated during charging a capacitor bear a ratio.


If the p. d. across a capacitor is increased from 10 V to 30 V, then the energy stored with the capacitor ____________.


A capacitor is charged by a battery and energy stored is 'U'. Now the battery is removed and the distance between plates is increased to four times. The energy stored becomes ______.


An air-filled parallel plate capacitor has a uniform electric field `overset(->)("E")` in the space between the plates. If the distance between the plates is 'd' and the area of each plate is 'A', the energy stored in the capacitor is ______ 
(∈0 = permittivity of free space)


A 2µF capacitor is charge to 100 volt and then its plate are connected by a conducting wire. The heat produced is:-


A parallel plate capacitor has a uniform electric field `overset(->)("E")` in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______

0 = permittivity of free space)


Prove that, if an insulated, uncharged conductor is placed near a charged conductor and no other conductors are present, the uncharged body must be intermediate in potential between that of the charged body and that of infinity.


A parallel plate capacitor (A) of capacitance C is charged by a battery to voltage V. The battery is disconnected and an uncharged capacitor (B) of capacitance 2C is connected across A. Find the ratio of total electrostatic energy stored in A and B finally and that stored in A initially.


Derive an expression for energy stored in a capacitor.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×