मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Capacitance C, a Resistance R and an Emf ε Are Connected in Series at T = 0. What is the Maximum Value of (A) the Potential Difference Across the Resistor - Physics

Advertisements
Advertisements

प्रश्न

A capacitance C, a resistance R and an emf ε are connected in series at t = 0. What is the maximum value of (a) the potential difference across the resistor (b) the current in the circuit (c) the potential difference across the capacitor (d) the energy stored in the capacitor (e) the power delivered by the battery and (f) the power converted into heat?

बेरीज

उत्तर

(a) When the charge on the capacitor is zero, it acts as short circuit.

Thus, maximum value of potential difference across the resistor = ε (at t = 0)​


(b) Maximum value of current in the circuit \[= \frac{\epsilon}{r}.........\left(\text{at }t = 0\right)\]


(c) Maximum value of potential difference across the capacitor = ε .............(at t = ∞, when the capacitor is fully charged and acts as a open circuit)


(d) Maximum energy stored in the capacitor \[= \frac{1}{2}C \epsilon^2.........\left(\text{at }t = \infty\right)\]


(e) Maximum power delivered by the battery \[= \frac{\epsilon^2}{r}\]


(f) Maximum power converted to heat \[= \frac{\epsilon^2}{r}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Electric Current in Conductors - Exercises [पृष्ठ २०२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 10 Electric Current in Conductors
Exercises | Q 61 | पृष्ठ २०२

संबंधित प्रश्‍न

A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor?


A 600 pF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?


(a) Find the current in the 20 Ω resistor shown in the figure. (b) If a capacitor of capacitance 4 μF is joined between the points A and B, what would be the electrostatic energy stored in it in steady state?


A 20 μF capacitor is joined to a battery of emf 6.0 V through a resistance of 100 Ω. Find the charge on the capacitor 2.0 ms after the connections are made.


The plates of a capacitor of capacitance 10 μF, charged to 60 μC, are joined together by a wire of resistance 10 Ω at t = 0. Find the charge on the capacitor in the circuit at (a) t = 0 (b) t = 30 μs (c) t = 120 μs and (d) t = 1.0 ms.


A 100 μF capacitor is joined to a 24 V battery through a 1.0 MΩ resistor. Plot qualitative graphs (a) between current and time for the first 10 minutes and (b) between charge and time for the same period.


How many time constants will elapse before the energy stored in the capacitor reaches half of its equilibrium value in a charging RC circuit?


A capacitance C charged to a potential difference V is discharged by connecting its plates through a resistance R. Find the heat dissipated in one time constant after the connections are made. Do this by calculating ∫ i2R dt and also by finding the decrease in the energy stored in the capacitor.


A capacitor of capacitance C is given a charge Q. At t = 0, it is connected to an uncharged capacitor of equal capacitance through a resistance R. Find the charge on the second capacitor as a function of time.


A capacitor of capacitance C is given a charge Q. At t = 0, it is connected to an ideal battery of emf ε through a resistance R. Find the charge on the capacitor at time t.


Answer the following question.
Obtain the expression for the energy stored in a capacitor connected across a dc battery. Hence define energy density of the capacitor


If the p. d. across a capacitor is increased from 10 V to 30 V, then the energy stored with the capacitor ____________.


An air-filled parallel plate capacitor has a uniform electric field `overset(->)("E")` in the space between the plates. If the distance between the plates is 'd' and the area of each plate is 'A', the energy stored in the capacitor is ______ 
(∈0 = permittivity of free space)


A parallel plate capacitor has a uniform electric field ‘`vec "E"`’ in the space between the plates. If the distance between the plates is ‘d’ and the area of each plate is ‘A’, the energy stored in the capacitor is ______

0 = permittivity of free space)


Do free electrons travel to region of higher potential or lower potential?


A parallel plate capacitor (A) of capacitance C is charged by a battery to voltage V. The battery is disconnected and an uncharged capacitor (B) of capacitance 2C is connected across A. Find the ratio of total electrostatic energy stored in A and B finally and that stored in A initially.


Electrostatic energy of 4 x 10−4 J is stored in a charged 25 pF capacitor. Find the charge on the capacitor.


Derive an expression for energy stored in a capacitor.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×