English
Karnataka Board PUCPUC Science Class 11

A Capacitance C, a Resistance R and an Emf ε Are Connected in Series at T = 0. What is the Maximum Value of (A) the Potential Difference Across the Resistor - Physics

Advertisements
Advertisements

Question

A capacitance C, a resistance R and an emf ε are connected in series at t = 0. What is the maximum value of (a) the potential difference across the resistor (b) the current in the circuit (c) the potential difference across the capacitor (d) the energy stored in the capacitor (e) the power delivered by the battery and (f) the power converted into heat?

Sum

Solution

(a) When the charge on the capacitor is zero, it acts as short circuit.

Thus, maximum value of potential difference across the resistor = ε (at t = 0)​


(b) Maximum value of current in the circuit \[= \frac{\epsilon}{r}.........\left(\text{at }t = 0\right)\]


(c) Maximum value of potential difference across the capacitor = ε .............(at t = ∞, when the capacitor is fully charged and acts as a open circuit)


(d) Maximum energy stored in the capacitor \[= \frac{1}{2}C \epsilon^2.........\left(\text{at }t = \infty\right)\]


(e) Maximum power delivered by the battery \[= \frac{\epsilon^2}{r}\]


(f) Maximum power converted to heat \[= \frac{\epsilon^2}{r}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Electric Current in Conductors - Exercises [Page 202]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 10 Electric Current in Conductors
Exercises | Q 61 | Page 202

RELATED QUESTIONS

In the following arrangement of capacitors, the energy stored in the 6 µF capacitor is E. Find the value of the following :
(i) Energy stored in 12 µF capacitor.
(ii) Energy stored in 3 µF capacitor.
(iii) Total energy drawn from the battery.


The energy density in the electric field created by a point charge falls off with the distance from the point charge as


A capacitor of capacitance 500 μF is connected to a battery through a 10 kΩ resistor. The charge stored in the capacitor in the first 5 s is larger than the charge stored in the next.

(a) 5 s

(b) 50 s

(c) 500 s

(d) 500 s


(a) Find the current in the 20 Ω resistor shown in the figure. (b) If a capacitor of capacitance 4 μF is joined between the points A and B, what would be the electrostatic energy stored in it in steady state?


A 20 μF capacitor is joined to a battery of emf 6.0 V through a resistance of 100 Ω. Find the charge on the capacitor 2.0 ms after the connections are made.


How many time constants will elapse before the energy stored in the capacitor reaches half of its equilibrium value in a charging RC circuit?


A capacitor of capacitance C is connected to a battery of emf ε at t = 0 through a resistance R. Find the maximum rate at which energy is stored in the capacitor. When does the rate have this maximum value?


By evaluating ∫i2Rdt, show that when a capacitor is charged by connecting it to a battery through a resistor, the energy dissipated as heat equals the energy stored in the capacitor.


A capacitor with stored energy 4⋅0 J is connected with an identical capacitor with no electric field in between. Find the total energy stored in the two capacitors.


A capacitor of capacitance C is given a charge Q. At t = 0, it is connected to an ideal battery of emf ε through a resistance R. Find the charge on the capacitor at time t.


Answer the following question.
Obtain the expression for the energy stored in a capacitor connected across a dc battery. Hence define energy density of the capacitor


If the p. d. across a capacitor is increased from 10 V to 30 V, then the energy stored with the capacitor ____________.


A parallel plate condenser is immersed in an oil of dielectric constant 2. The field between the plates is ______.


A 2µF capacitor is charge to 100 volt and then its plate are connected by a conducting wire. The heat produced is:-


What fraction of the energy drawn from the charging battery is stored in a capacitor?


Do free electrons travel to region of higher potential or lower potential?


In a capacitor of capacitance 20 µF, the distance between the plates is 2 mm. If a dielectric slab of width 1 mm and dielectric constant 2 is inserted between the plates, what is the new capacitance?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×