हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

P the Energy Density in the Electric Field Created by a Point Charge Falls off with the Distance from the Point Charge as - Physics

Advertisements
Advertisements

प्रश्न

The energy density in the electric field created by a point charge falls off with the distance from the point charge as

विकल्प

  • `1/r`

  • `1/r^2`

  • `1/r^3`

  • `1/r^4`

MCQ

उत्तर

`1/r^4`

Energy density U is given by `U = 1/2∈_0E^2`.......(1)

The electric field created by a point charge at a distance r is given by `E = q/(4pi∈_0r^2)`

On putting the above form of E in eq. 1, we get

`U = 1/2 ∈_0(q/(4pi∈_0r_2))^2`

Thus, U is directly proportional to `1/r^4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Capacitors - MCQ [पृष्ठ १६४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 9 Capacitors
MCQ | Q 6 | पृष्ठ १६४

संबंधित प्रश्न

A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor?


In the following arrangement of capacitors, the energy stored in the 6 µF capacitor is E. Find the value of the following :
(i) Energy stored in 12 µF capacitor.
(ii) Energy stored in 3 µF capacitor.
(iii) Total energy drawn from the battery.


How many time constants will elapse before the current in a charging RC circuit drops to half of its initial value? Answer the same question for a discharging RC circuit.


How many time constants will elapse before the charge on a capacitors falls to 0.1% of its maximum value in a discharging RC circuit?


How many time constants will elapse before the energy stored in the capacitor reaches half of its equilibrium value in a charging RC circuit?


A capacitance C charged to a potential difference V is discharged by connecting its plates through a resistance R. Find the heat dissipated in one time constant after the connections are made. Do this by calculating ∫ i2R dt and also by finding the decrease in the energy stored in the capacitor.


A capacitor with stored energy 4⋅0 J is connected with an identical capacitor with no electric field in between. Find the total energy stored in the two capacitors.


A capacitor of capacitance 100 μF is connected across a battery of emf 6 V through a resistance of 20 kΩ for 4 s. The battery is then replaced by a thick wire. What will be the charge on the capacitor 4 s after the battery is disconnected?


A capacitor of capacitance C is given a charge Q. At t = 0, it is connected to an uncharged capacitor of equal capacitance through a resistance R. Find the charge on the second capacitor as a function of time.


A point charge Q is placed at the origin. Find the electrostatic energy stored outside the sphere of radius R centred at the origin.


Figure shows two identical parallel plate capacitors connected to a battery through a switch S. Initially, the switch is closed so that the capacitors are completely charged. The switch is now opened and the free space between the plates of the capacitors is filled with a dielectric of dielectric constant 3. Find the ratio of the initial total energy stored in the capacitors to the final total energy stored.


Choose the correct option:

Energy stored in a capacitor and dissipated during charging a capacitor bear a ratio.


Do free electrons travel to region of higher potential or lower potential?


Prove that, if an insulated, uncharged conductor is placed near a charged conductor and no other conductors are present, the uncharged body must be intermediate in potential between that of the charged body and that of infinity.


Derive an expression for energy stored in a capacitor.


In a capacitor of capacitance 20 µF, the distance between the plates is 2 mm. If a dielectric slab of width 1 mm and dielectric constant 2 is inserted between the plates, what is the new capacitance?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×