Advertisements
Advertisements
प्रश्न
Calculate the coefficient of correlation between X and Y series from the following data.
Description | X | Y |
Number of pairs of observation | 15 | 15 |
Arithmetic mean | 25 | 18 |
Standard deviation | 3.01 | 3.03 |
Sum of squares of deviation from the arithmetic mean | 136 | 138 |
Summation of product deviations of X and Y series from their respective arithmetic means is 122.
उत्तर
N = 15, `bar"X"` = 25, `bar"Y"` = 18, ∑X2 = 138, ∑Y2 = 138, ∑XY = 122
Correlation coefficient
r = `(sum"XY")/(sqrt(sum"X"^2 sum "y"^2))`
= `122/(sqrt (136 xx 138))`
= `122/136.996`
= 0.891
APPEARS IN
संबंधित प्रश्न
In the following data one of the value of y is missing. Arithmetic means of x and y series are 6 and 8 respectively. `(sqrt(2) = 1.4142)`
x | 6 | 2 | 10 | 4 | 8 |
y | 9 | 11 | ? | 8 | 7 |
Estimate missing observation.
Calculate the correlation coefficient for the following data.
X | 5 | 10 | 5 | 11 | 12 | 4 | 3 | 2 | 7 | 1 |
Y | 1 | 6 | 2 | 8 | 5 | 1 | 4 | 6 | 5 | 2 |
Calculate the coefficient of correlation for the ages of husbands and their respective wives:
Age of husbands | 23 | 27 | 28 | 29 | 30 | 31 | 33 | 35 | 36 | 39 |
Age of wives | 18 | 22 | 23 | 24 | 25 | 26 | 28 | 29 | 30 | 32 |
The correlation coefficient from the following data N = 25, ∑X = 125, ∑Y = 100, ∑X2 = 650, ∑Y2 = 436, ∑XY = 520
The correlation coefficient is
If two variables moves in decreasing direction then the correlation is
The person suggested a mathematical method for measuring the magnitude of linear relationship between two variables say X and Y is
If Cov(x, y) = – 16.5, `sigma_"x"^2` = 2.89, `sigma_"y"^2` = 100. Find correlation coefficient.
A measure of the strength of the linear relationship that exists between two variables is called:
State and explain the different kinds of Correlation.