Advertisements
Advertisements
प्रश्न
The correlation coefficient from the following data N = 25, ∑X = 125, ∑Y = 100, ∑X2 = 650, ∑Y2 = 436, ∑XY = 520
विकल्प
0.667
− 0.006
– 0.667
0.70
उत्तर
0.667
Explanation:
r = `("N"sum"XY" - sum"X"sum"Y")/(sqrt("N"sum"X"^2 - (sum"X")^2) sqrt("N"sum"Y"^2 - (sum"Y")^2))`
= `(25(520) - 125 xx 100)/(sqrt(25 xx 650 - (125)^2) sqrt(25 xx 436 - (100)^2))`
= `(13000 - 12500)/(sqrt(16250 - 15625) sqrt(10900 - 10000))`
= `500/(sqrt625 sqrt900)`
= `500/(25 xx 30)`
= `2/3`
= 0.6666
= 0.667
APPEARS IN
संबंधित प्रश्न
Find the coefficient of correlation for the following:
Cost (₹) | 14 | 19 | 24 | 21 | 26 | 22 | 15 | 20 | 19 |
Sales (₹) | 31 | 36 | 48 | 37 | 50 | 45 | 33 | 41 | 39 |
Calculate the coefficient of correlation between X and Y series from the following data.
Description | X | Y |
Number of pairs of observation | 15 | 15 |
Arithmetic mean | 25 | 18 |
Standard deviation | 3.01 | 3.03 |
Sum of squares of deviation from the arithmetic mean | 136 | 138 |
Summation of product deviations of X and Y series from their respective arithmetic means is 122.
Find the coefficient of correlation for the following:
X | 78 | 89 | 96 | 69 | 59 | 79 | 68 | 62 |
Y | 121 | 72 | 88 | 60 | 81 | 87 | 123 | 92 |
The correlation coefficient is
The correlation coefficient
If r = – 1, then correlation between the variables
If Cov(x, y) = – 16.5, `sigma_"x"^2` = 2.89, `sigma_"y"^2` = 100. Find correlation coefficient.
Find the coefficient of correlation for the following data:
X | 35 | 40 | 60 | 79 | 83 | 95 |
Y | 17 | 28 | 30 | 32 | 38 | 49 |
A measure of the strength of the linear relationship that exists between two variables is called:
State and explain the different kinds of Correlation.