Advertisements
Advertisements
Question
The correlation coefficient from the following data N = 25, ∑X = 125, ∑Y = 100, ∑X2 = 650, ∑Y2 = 436, ∑XY = 520
Options
0.667
− 0.006
– 0.667
0.70
Solution
0.667
Explanation:
r = `("N"sum"XY" - sum"X"sum"Y")/(sqrt("N"sum"X"^2 - (sum"X")^2) sqrt("N"sum"Y"^2 - (sum"Y")^2))`
= `(25(520) - 125 xx 100)/(sqrt(25 xx 650 - (125)^2) sqrt(25 xx 436 - (100)^2))`
= `(13000 - 12500)/(sqrt(16250 - 15625) sqrt(10900 - 10000))`
= `500/(sqrt625 sqrt900)`
= `500/(25 xx 30)`
= `2/3`
= 0.6666
= 0.667
APPEARS IN
RELATED QUESTIONS
Calculate the correlation coefficient for the following data.
X | 5 | 10 | 5 | 11 | 12 | 4 | 3 | 2 | 7 | 1 |
Y | 1 | 6 | 2 | 8 | 5 | 1 | 4 | 6 | 5 | 2 |
Find the coefficient of correlation for the following:
Cost (₹) | 14 | 19 | 24 | 21 | 26 | 22 | 15 | 20 | 19 |
Sales (₹) | 31 | 36 | 48 | 37 | 50 | 45 | 33 | 41 | 39 |
Example for positive correlation is
If the values of two variables move in the opposite direction then the correlation is said to be
The variable which influences the values or is used for prediction is called
The person suggested a mathematical method for measuring the magnitude of linear relationship between two variables say X and Y is
Find the coefficient of correlation for the following data:
X | 35 | 40 | 60 | 79 | 83 | 95 |
Y | 17 | 28 | 30 | 32 | 38 | 49 |
Calculate the correlation coefficient from the data given below:
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Y | 9 | 8 | 10 | 12 | 11 | 13 | 14 | 16 | 15 |
The value of the coefficient of correlation r lies between:
Calculate the Karl Pearson Correlation Co-efficient for the following data:
Demand for Product X : | 23 | 27 | 28 | 29 |
30 |
31 | 33 | 35 | 36 | 39 |
Sale of Product Y: | 18 | 22 | 23 | 24 | 25 | 26 | 28 | 29 | 30 | 32 |