Advertisements
Advertisements
Question
From the following data, N = 11, ∑X = 117, ∑Y = 260, ∑X2 = 1313, ∑Y2 = 6580, ∑XY = 2827 the correlation coefficient is
Options
0.3566
– 0.3566
0
0.4566
Solution
0.3566
Explanation:
r = `("N"sum"XY" - sum"X"sum"Y")/(sqrt("N"sum"X"^2 - (sum"X")^2) sqrt("N"sum"Y"^2 - (sum"Y")^2))`
= `(11 xx 2827 - 117 xx 260)/(sqrt (11 xx 1313 - (117)^2) sqrt (11 xx 6580 - (260)^2))`
= `(31097 xx 30420)/(sqrt(14443 - 13689) sqrt (72380 - 67600))`
= `677/(sqrt 754 sqrt 4780)`
= `677/sqrt3604120`
= `677/1898.45`
= 0.3566
APPEARS IN
RELATED QUESTIONS
In the following data one of the value of y is missing. Arithmetic means of x and y series are 6 and 8 respectively. `(sqrt(2) = 1.4142)`
x | 6 | 2 | 10 | 4 | 8 |
y | 9 | 11 | ? | 8 | 7 |
Estimate missing observation.
Calculate the correlation coefficient for the following data.
X | 5 | 10 | 5 | 11 | 12 | 4 | 3 | 2 | 7 | 1 |
Y | 1 | 6 | 2 | 8 | 5 | 1 | 4 | 6 | 5 | 2 |
If the values of two variables move in same direction then the correlation is said to be
Correlation co-efficient lies between
If r(X,Y) = 0 the variables X and Y are said to be
The correlation coefficient from the following data N = 25, ∑X = 125, ∑Y = 100, ∑X2 = 650, ∑Y2 = 436, ∑XY = 520
The variable which influences the values or is used for prediction is called
If r = – 1, then correlation between the variables
Find the coefficient of correlation for the following data:
X | 35 | 40 | 60 | 79 | 83 | 95 |
Y | 17 | 28 | 30 | 32 | 38 | 49 |
If both variables X and Y increase or decrease simultaneously, then the coefficient of correlation will be: