Advertisements
Advertisements
प्रश्न
From the following data, N = 11, ∑X = 117, ∑Y = 260, ∑X2 = 1313, ∑Y2 = 6580, ∑XY = 2827 the correlation coefficient is
पर्याय
0.3566
– 0.3566
0
0.4566
उत्तर
0.3566
Explanation:
r = `("N"sum"XY" - sum"X"sum"Y")/(sqrt("N"sum"X"^2 - (sum"X")^2) sqrt("N"sum"Y"^2 - (sum"Y")^2))`
= `(11 xx 2827 - 117 xx 260)/(sqrt (11 xx 1313 - (117)^2) sqrt (11 xx 6580 - (260)^2))`
= `(31097 xx 30420)/(sqrt(14443 - 13689) sqrt (72380 - 67600))`
= `677/(sqrt 754 sqrt 4780)`
= `677/sqrt3604120`
= `677/1898.45`
= 0.3566
APPEARS IN
संबंधित प्रश्न
Calculate the coefficient of correlation between X and Y series from the following data.
Description | X | Y |
Number of pairs of observation | 15 | 15 |
Arithmetic mean | 25 | 18 |
Standard deviation | 3.01 | 3.03 |
Sum of squares of deviation from the arithmetic mean | 136 | 138 |
Summation of product deviations of X and Y series from their respective arithmetic means is 122.
Find the coefficient of correlation for the following:
X | 78 | 89 | 96 | 69 | 59 | 79 | 68 | 62 |
Y | 121 | 72 | 88 | 60 | 81 | 87 | 123 | 92 |
If the values of two variables move in same direction then the correlation is said to be
The correlation coefficient from the following data N = 25, ∑X = 125, ∑Y = 100, ∑X2 = 650, ∑Y2 = 436, ∑XY = 520
The variable whose value is influenced (or) is to be predicted is called
If r = – 1, then correlation between the variables
The coefficient of correlation describes
Calculate the coefficient of correlation from the following data:
∑X = 50, ∑Y = – 30, ∑X2 = 290, ∑Y2 = 300, ∑XY = – 115, N = 10
Calculate the correlation coefficient from the following data:
∑X = 125, ∑Y = 100, ∑X2 = 650, ∑Y2 = 436, ∑XY = 520, N = 25
State and explain the different kinds of Correlation.