Advertisements
Advertisements
प्रश्न
Calculate the coefficient of correlation from the following data:
∑X = 50, ∑Y = – 30, ∑X2 = 290, ∑Y2 = 300, ∑XY = – 115, N = 10
उत्तर
∑X = 50, ∑Y = – 30, ∑X2 = 290, ∑Y2 = 300, ∑XY = – 115, N = 10
Coefficient of correlation
r(X, Y) = `("N"sum"XY" - (sum"X")(sum"Y"))/(sqrt("N"sum"X"^2 - (sum"X")^2) xx sqrt("N"sum"Y"^2 - (sum"Y")^2))`
= `(10(-115) - (50)(-30))/(sqrt(10(290) - (50)^2) xx sqrt(10(300) - (-30)^2))`
= `(-1150 + 1500)/((20)(sqrt2100))`
= `350/((20)(45.83))`
= `350/916.6`
r = 0.382
APPEARS IN
संबंधित प्रश्न
Find the coefficient of correlation for the following:
Cost (₹) | 14 | 19 | 24 | 21 | 26 | 22 | 15 | 20 | 19 |
Sales (₹) | 31 | 36 | 48 | 37 | 50 | 45 | 33 | 41 | 39 |
The correlation coefficient
If r = – 1, then correlation between the variables
If Cov(x, y) = – 16.5, `sigma_"x"^2` = 2.89, `sigma_"y"^2` = 100. Find correlation coefficient.
Calculate the correlation coefficient from the data given below:
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Y | 9 | 8 | 10 | 12 | 11 | 13 | 14 | 16 | 15 |
If the points on the scatter diagram indicate that as one variable increases the other variable tends to decrease the value of r will be:
The value of the coefficient of correlation r lies between:
Define Correlation.
State and explain the different kinds of Correlation.
Calculate the Karl Pearson Correlation Co-efficient for the following data:
Demand for Product X : | 23 | 27 | 28 | 29 |
30 |
31 | 33 | 35 | 36 | 39 |
Sale of Product Y: | 18 | 22 | 23 | 24 | 25 | 26 | 28 | 29 | 30 | 32 |