Advertisements
Advertisements
प्रश्न
Calculate the coefficient of correlation from the following data:
∑X = 50, ∑Y = – 30, ∑X2 = 290, ∑Y2 = 300, ∑XY = – 115, N = 10
उत्तर
∑X = 50, ∑Y = – 30, ∑X2 = 290, ∑Y2 = 300, ∑XY = – 115, N = 10
Coefficient of correlation
r(X, Y) = `("N"sum"XY" - (sum"X")(sum"Y"))/(sqrt("N"sum"X"^2 - (sum"X")^2) xx sqrt("N"sum"Y"^2 - (sum"Y")^2))`
= `(10(-115) - (50)(-30))/(sqrt(10(290) - (50)^2) xx sqrt(10(300) - (-30)^2))`
= `(-1150 + 1500)/((20)(sqrt2100))`
= `350/((20)(45.83))`
= `350/916.6`
r = 0.382
APPEARS IN
संबंधित प्रश्न
Calculate the correlation coefficient for the following data.
X | 5 | 10 | 5 | 11 | 12 | 4 | 3 | 2 | 7 | 1 |
Y | 1 | 6 | 2 | 8 | 5 | 1 | 4 | 6 | 5 | 2 |
Find the coefficient of correlation for the following:
Cost (₹) | 14 | 19 | 24 | 21 | 26 | 22 | 15 | 20 | 19 |
Sales (₹) | 31 | 36 | 48 | 37 | 50 | 45 | 33 | 41 | 39 |
Example for positive correlation is
If the values of two variables move in same direction then the correlation is said to be
Correlation co-efficient lies between
The correlation coefficient is
The variable whose value is influenced (or) is to be predicted is called
The variable which influences the values or is used for prediction is called
The correlation coefficient
If Cov(x, y) = – 16.5, `sigma_"x"^2` = 2.89, `sigma_"y"^2` = 100. Find correlation coefficient.