हिंदी

Calculate the regression equations of X on Y and Y on X from the following data: - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Calculate the regression equations of X on Y and Y on X from the following data:

X 10 12 13 17 18
Y 5 6 7 9 13
योग

उत्तर

X = xi Y = yi `"x"_"i"^2` `"y"_"i"^2` xi yi
10 5 100 25 50
12 6 144 36 72
13 7 169 49 91
17 9 289 81 153
18 13 324 169 234
70 40 1026 360 600

From the table, we have,

n = 5, ∑ xi = 70, ∑ yi = 40, ∑ xi yi = 600, `sum"x"_"i"^2 = 1026`, `sum"y"_"i"^2 = 360

`bar"x" = sum"x"_"i"/"n" = 70/5 = 14`,

`bar"y" = sum"y"_"i"/"n" = 40/5 = 8`

Now, for regression equation of X on Y

`"b"_"XY" = (sum"x"_"i" "y"_"i" - "n"  bar "x"  bar "y")/(sum "y"_"i"^2 - "n" bar"y"^2)`

`= (600 - 5 xx 14 xx 8)/(360 - 5(8)^2) = (600 - 560)/(360 - 320) = 40/40 = 1`

Also, `"a"' = bar"x" - "b"_"XY"  bar"y" = 14 - 1(8) = 14 - 8 = 6`

∴ The regression equation of X on Y is

X = a' + bXYY

∴ X = 6 + Y

Now, for regression equation of Y on X

`"b"_"YX" = (sum"x"_"i" "y"_"i" - "n" bar "x" bar "y")/(sum "x"_"i"^2 - "n"  bar"x"^2)`

`= (600 - 5(14)(8))/(1026 - 5(14)^2) = (600- 560)/(1026 - 980) = 40/46 = 0.87`

Also, a = `bar"y" - "b"_"YX"  bar"x"`

`= 8 - 0.87 xx 14 = 8 - 12.18 = - 4.18`

∴ The regression equation of Y on X is

Y = a + bYX X

∴ Y = - 4.18 + 0.87X

shaalaa.com
Types of Linear Regression
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.1 [पृष्ठ ४१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.1 | Q 2 | पृष्ठ ४१

संबंधित प्रश्न

The following table gives the aptitude test scores and productivity indices of 10 workers selected at random.

Aptitude score (X) 60 62 65 70 72 48 53 73 65 82
Productivity Index (Y) 68 60 62 80 85 40 52 62 60 81

Obtain the two regression equations and estimate the test score when the productivity index is 75.


Compute the appropriate regression equation for the following data:

X
[Independent Variable]
2 4 5 6 8 11
Y [dependent Variable] 18 12 10 8 7 5

The following are the marks obtained by the students in Economics (X) and Mathematics (Y)

X 59 60 61 62 63
Y 78 82 82 79 81

Find the regression equation of Y on X.


From the following data obtain the equation of two regression lines:

X 6 2 10 4 8
Y 9 11 5 8 7

For the following data, find the regression line of Y on X

X 1 2 3
Y 2 1 6

Hence find the most likely value of y when x = 4.


From the following data, find the regression equation of Y on X and estimate Y when X = 10.

X 1 2 3 4 5 6
Y 2 4 7 6 5 6

Choose the correct alternative.

If u = `("x - a")/"c" and "v" = ("y - b")/"d"  "then"   "b"_"yx"` = _________


Choose the correct alternative.

If u = `("x - a")/"c" and "v" = ("y - b")/"d"  "then"   "b"_"xy"` = _________


The regression equation of y on x is given by 3x + 2y − 26 = 0. Find byx


Choose the correct alternative.

bxy = ______


Choose the correct alternative.

If bxy < 0 and byx < 0 then 'r' is __________


Fill in the blank:

Regression equation of Y on X is_________


Fill in the blank:

Corr (x, −x) = __________


Fill in the blank:

If u = `"x - a"/"c" and  "v" = "y - b"/"d"` then bxy = _______


Fill in the blank:

If byx > 1 then bxy is _______


Fill in the blank:

bxy . byx = _______


State whether the following statement is True or False.

byx is correlation coefficient between X and Y


State whether the following statement is True or False.

If u = x - a and v = y - b then rxy = ruv 


State whether the following statement is True or False:

Correlation analysis is the theory of games


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×