हिंदी

From the following data obtain the equation of two regression lines: - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

From the following data obtain the equation of two regression lines:

X 6 2 10 4 8
Y 9 11 5 8 7
योग

उत्तर

X = xi Y = yi `"x"_"i"^2` `"y"_"i"^2` xi yi
6 9 36 81 54
2 11 4 121 22
10 5 100 25 50
4 8 16 64 32
8 7 64 49 56
30 40 220 340 214

From the table, we have

n = 5, ∑ xi = 30, ∑ yi = 40, `sum "x"_"i"^2 = 220`, `sum "y"_"i"^2 = 340,` ∑ xi yi = 214

`bar x = (sum x_i)/"n" = 30/5 = 6`

`bar y = (sum y_i)/"n" = 40/5 = 8`

Now, for regression equation of Y on X,

`"b"_"YX" = (sum"x"_"i" "y"_"i" - "n" bar "x" bar "y")/(sum "x"_"i"^2 - "n" bar"x"^2)`

`= (214 - 5xx 6 xx 8)/(220 - 5(6)^2) = (214 - 240)/(220 - 180) = (-26)/40` = - 0.65

Also, `"a" = bar y - "b"_"YX"  bar x`

= 8 - (- 0.65)(6) = 8 + 3.9 = 11.9

The regression equation of Y on X is

Y = a + bYX X

∴ Y = 11.9 - 0.65X

Now, for regression equation of X on Y,

`"b"_"XY" = (sum"x"_"i" "y"_"i" - "n" bar "x" bar "y")/(sum "y"_"i"^2 - "n" bar"y"^2)`

`= (214 - 5 xx 6 xx 8)/(340 - 5(8)^2) = (214 - 240)/(340 - 320) = (-26)/20` = - 1.3

Also, `"a"' = bar x - "b"_"XY"  bar y`

= 6 - (- 1.3)8 = 6 + 10.4 = 16.4

The regression equation of Y on X is

X = a' + bXY Y

∴ X = 16.4 - 1.3Y

shaalaa.com
Types of Linear Regression
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Linear Regression - Exercise 3.1 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Linear Regression
Exercise 3.1 | Q 9 | पृष्ठ ४२

संबंधित प्रश्न

Calculate the regression equations of X on Y and Y on X from the following data:

X 10 12 13 17 18
Y 5 6 7 9 13

The following table gives the aptitude test scores and productivity indices of 10 workers selected at random.

Aptitude score (X) 60 62 65 70 72 48 53 73 65 82
Productivity Index (Y) 68 60 62 80 85 40 52 62 60 81

Obtain the two regression equations and estimate the test score when the productivity index is 75.


For the following data, find the regression line of Y on X

X 1 2 3
Y 2 1 6

Hence find the most likely value of y when x = 4.


The following sample gives the number of hours of study (X) per day for an examination and marks (Y) obtained by 12 students.

X 3 3 3 4 4 5 5 5 6 6 7 8
Y 45 60 55 60 75 70 80 75 90 80 75 85

Obtain the line of regression of marks on hours of study.


Choose the correct alternative.

If u = `("x - a")/"c" and "v" = ("y - b")/"d"  "then"   "b"_"yx"` = _________


Choose the correct alternative.

If u = `("x - a")/"c" and "v" = ("y - b")/"d"  "then"   "b"_"xy"` = _________


The regression equation of y on x is given by 3x + 2y − 26 = 0. Find byx


Choose the correct alternative.

byx = ______


Fill in the blank:

If bxy < 0 and byx < 0 then ‘r’ is __________


Fill in the blank:

Regression equation of Y on X is_________


Fill in the blank:

Corr (x, −x) = __________


Fill in the blank:

|bxy + byx| ≥ ______


Corr (x, x) = 1


State whether the following statement is True or False.

If u = x - a and v = y - b then bxy = buv 


State whether the following statement is True or False.

If u = x - a and v = y - b then rxy = ruv 


Compute the appropriate regression equation for the following data:

x (Dependent Variable) 10 12 13 17 18
y (Independent Variable) 5 6 7 9 13

If bxy < 0 and byx < 0 then 'r ' is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×