Advertisements
Advertisements
प्रश्न
Calculate the standard enthalpy of the reaction.
\[\ce{2Fe_{(s)} + \frac{3}{2} O_{2(g)} -> Fe2O_{3(s)}}\]
Given:
1. | \[\ce{2Al_{(s)} + Fe2O_{3(s)} -> 2Fe_{(s)} + Al_2O_{3(s)}}\], | ∆rH° = –847.6 kJ |
2. | \[\ce{2Al_{(s)} + \frac{3}{2} O_{2(g)} -> Al2O_{3(s)}}\], | ∆rH° = –1670 kJ |
उत्तर
Given: Given equations are,
\[\ce{2Al_{(s)} + Fe2O_{3(s)} -> 2Fe_{(s)} + Al_2O_{3(s)}}\], ∆rH° = –847.6 kJ .....(1)
\[\ce{2Al_{(s)} + \frac{3}{2} O_{2(g)} -> Al2O_{3(s)}}\], ∆rH° = –1670 kJ .......(2)
To find: Standard enthalpy of the given reaction
Calculation: Reverse equation (1),
\[\ce{2Fe_{(s)} + Al_2O_{3(s)} -> 2Al_{(s)} + Fe2O_{3(s)}}\], ΔrH° = 847.6 kJ …. (3)
Add equation (2) to equation (3),
\[\ce{2Fe_{(s)} + Al_2O_{3(s)} -> 2Al_{(s)} + Fe2O_{3(s)}}\], | ΔrH° = 847.6 kJ |
\[\ce{2Al_{(s)} + \frac{3}{2} O_{2(g)} -> Al2O_{3(s)}}\], | ∆rH° = –1670 kJ |
\[\ce{2Fe_{(s)} + \frac{3}{2} O_{2(g)} -> Fe2O_{2(s)}}\], |
ΔrH° = 847.6 + (−1670) = −822.4 kJ
The standard enthalpy of the given reaction is −822.4 kJ.
APPEARS IN
संबंधित प्रश्न
Answer in brief.
How will you calculate reaction enthalpy from data on bond enthalpies?
Answer in brief.
How much heat is evolved when 12 g of CO reacts with NO2? The reaction is:
4CO(g) 2NO2(g) → 4CO2(g) + N2(g), ΔrH° = - 1200 kJ
The enthalpy change for the reaction, \[\ce{C2H4_{(g)} + H2_{(g)} -> C2H6_{(g)}}\] is −620 J when 100 mL of ethylene and 100 ml of \[\ce{H2}\] react at 1 bar pressure. Calculate the pressure volume type of work and ΔU for the reaction.
The standard enthalpy of formation of water is - 286 kJ mol-1. Calculate the enthalpy change for the formation of 0.018 kg of water.
Calculate enthalpy of formation of HCl if bond enthalpies of H2, Cl2 and HCl are 434 kJ mol-1, 242 kJ mol–1 and 431 kJ mol–1 respectively.
Calculate the standard enthalpy of formation of liquid methanol from the following data:
- \[\ce{CH3OH_{(l)} + \frac{3}{2} O_{2(g)} -> CO_{2(g)} + 2H2O_{(l)}}\] ∆H° = – 726 kJ mol–1
- \[\ce{C_{(Graphite)} + O_{2(g)} -> CO_{2(g)}}\] ∆cH° = – 393 kJ mol–1
- \[\ce{H_{2(g)} + \frac{1}{2} O_{2(g)} -> H2O_{(l)}}\] ∆fH° = – 286 kJ mol–1
Define the Bond enthalpy.
Write an application of Hess’s law.
Does the following reaction represent a thermochemical equation?
\[\ce{CH_{4(g)} + 2O_{2(g)} -> CO_{2(g)} + 2H2O_{(g)}}\], ∆fH° = –900 kJ mol–1
Classify the following into intensive and extensive properties.
Pressure, volume, mass, temperature.
A compound that has a high negative heat of formation is normally ____________.
Which among the following salts, solubility decreases with increase in temperature?
Which of the following compounds is Not present in its standard state at 25°C and 1 atmosphere pressure?
Given the reaction,
\[\ce{CH2O_{(g)} + O2_{(g)} -> CO2_{(g)} + H2O_{(g)}}\] ΔH = −527 kJ
How much heat will be evolved in the formation of 60 g of CO2?
The enthalpy of formation of nitrogen dioxide is +33.2 kJ mol−1. The enthalpy of the reaction \[\ce{2N2_{(g)} + 4O2_{(g)} -> 4NO2_{(g)}}\]; is ____________.
Standard enthalpy of formation of water is - 286 kJ mol-1. When 1800 mg of water is formed from its constituent elements in their standard states the amount of energy liberated is ______.
Given that,
\[\ce{C_{(s)} + O_{2(g)} -> CO_{2(g)}}\] ΔH° = -X kJ
\[\ce{2CO_{(g)} + O_{2(g)} -> 2CO_{2(g)}}\] ΔH° = - Y kJ, then standard enthalpy of formation of carbon monoxide is ________.
Which of the following equations has ΔfH° and ΔH° same?
When the enthalpy of combustion of carbon to carbon dioxide is - 360 kJ mol-1, then the enthalpy change for the formation of 18 g of CO2 from carbon and dioxygen at the same temperature in kJ will be ______.
Calculate the standard enthalpy of the reaction:
SiO2(s) + 3C(graphite) → SiC(s) + 2CO(g) from the following reactions:
- Si(s) + O2(g) → SiO2(s), ΔrH° = −911kJ
- 2C(graphite) + O2(g) → 2CO(g), ΔrH° = −221kJ
- Si(s) + C(graphite) → SiC(s), ΔrH° = −65.3kJ
Which of the following reactions defines the enthalpy of formation?
Standard enthalpy of combustion of a substance is given. Then Write thermochemical equation.
ΔcH0[C2H5OH(1)] = - 1409 kJ mol-1
Standard enthalpy of combustion of a substance is given. Then Write thermochemical equation.
ΔcH0[CH3CHO(l)] = - 1166 kJ mol-1
Heat of combustion of methane is - 890 kJ/mol. On combustion of 12 gm of methane in excess of oxygen, ______ heat is evolved.
The heat evolved in the combustion of 6.022 x 1021 carbon particles is 3.94 kJ. The heat of combustion of carbon is ______.
Heat of combustion of CH4(g) is -890 kJ/mole. What is the value of Δc H of 8gm of methane?
Calculate the standard enthalpy of combustion of methane if the standard enthalpy of formation of methane, carbon dioxide and water are −74.8, −393.5 and −285.8 kJmol−1 respectively.