Advertisements
Advertisements
Question
Calculate the standard enthalpy of the reaction.
\[\ce{2Fe_{(s)} + \frac{3}{2} O_{2(g)} -> Fe2O_{3(s)}}\]
Given:
1. | \[\ce{2Al_{(s)} + Fe2O_{3(s)} -> 2Fe_{(s)} + Al_2O_{3(s)}}\], | ∆rH° = –847.6 kJ |
2. | \[\ce{2Al_{(s)} + \frac{3}{2} O_{2(g)} -> Al2O_{3(s)}}\], | ∆rH° = –1670 kJ |
Solution
Given: Given equations are,
\[\ce{2Al_{(s)} + Fe2O_{3(s)} -> 2Fe_{(s)} + Al_2O_{3(s)}}\], ∆rH° = –847.6 kJ .....(1)
\[\ce{2Al_{(s)} + \frac{3}{2} O_{2(g)} -> Al2O_{3(s)}}\], ∆rH° = –1670 kJ .......(2)
To find: Standard enthalpy of the given reaction
Calculation: Reverse equation (1),
\[\ce{2Fe_{(s)} + Al_2O_{3(s)} -> 2Al_{(s)} + Fe2O_{3(s)}}\], ΔrH° = 847.6 kJ …. (3)
Add equation (2) to equation (3),
\[\ce{2Fe_{(s)} + Al_2O_{3(s)} -> 2Al_{(s)} + Fe2O_{3(s)}}\], | ΔrH° = 847.6 kJ |
\[\ce{2Al_{(s)} + \frac{3}{2} O_{2(g)} -> Al2O_{3(s)}}\], | ∆rH° = –1670 kJ |
\[\ce{2Fe_{(s)} + \frac{3}{2} O_{2(g)} -> Fe2O_{2(s)}}\], |
ΔrH° = 847.6 + (−1670) = −822.4 kJ
The standard enthalpy of the given reaction is −822.4 kJ.
APPEARS IN
RELATED QUESTIONS
Answer the following in one or two sentences.
What is standard state of a substance?
Answer in brief.
What is the standard enthalpy of combustion? Give an example.
Calculate the total heat required
a) to melt 180 g of ice at 0 °C
b) heat it to 100 °C and then
c) vapourise it at that temperature.
[Given: ΔfusH° (ice) = 6.01 kJ mol-1 at 0 °C, ΔvapH° (H2O) = 40.7 kJ mol-1 at 100 °C, Specific heat of water is 4.18 J g-1 K-1]
Calculate enthalpy of formation of HCl if bond enthalpies of H2, Cl2 and HCl are 434 kJ mol-1, 242 kJ mol–1 and 431 kJ mol–1 respectively.
The enthalpy change of the following reaction:
\[\ce{CH_{4(g)} + Cl_{2(g)} -> CH3Cl_{(g)} + HCl_{(g)}ΔH^0 = –104 kJ}\]
Calculate C – Cl bond enthalpy. The bond enthalpies are:
Bond | C − H | Cl − Cl | H − Cl |
∆H°/kJ mol−1 | 414 | 243 | 431 |
Calculate the standard enthalpy of formation of liquid methanol from the following data:
- \[\ce{CH3OH_{(l)} + \frac{3}{2} O_{2(g)} -> CO_{2(g)} + 2H2O_{(l)}}\] ∆H° = – 726 kJ mol–1
- \[\ce{C_{(Graphite)} + O_{2(g)} -> CO_{2(g)}}\] ∆cH° = – 393 kJ mol–1
- \[\ce{H_{2(g)} + \frac{1}{2} O_{2(g)} -> H2O_{(l)}}\] ∆fH° = – 286 kJ mol–1
Define the Bond enthalpy.
Classify the following into intensive and extensive properties.
Pressure, volume, mass, temperature.
The heat of formations of CO(g) and CO2(g) are −26.4 kcal and −94.0 kcal respectively. The heat of combustion of carbon monoxide will be ____________.
The standard heats of formation for CCl4(g), H2O(g), CO2(g), and HCl(g) are −25.5, −57.8, −94.1 and −22.1 kcal mol−1, respectively.
∆H for the reaction
\[\ce{CCl4_{(g)} + 2H2O_{(g)} -> CO2_{(g)} + 4HCl_{(g)}}\] at 298 K
Daily requirement of energy of a person is 'x' kJ. If heat of combustion of food material (Molecular mass = 100 g) is 'y' kJ, his daily consumption of the food in gram would be ____________.
The standard heats of formation in kcal mol−1 of NO2(g) and N2O4(g) are 8.0 and 2.0 respectively. The heat of dimerization of NO2 in kcal is ____________.
\[\ce{2NO2_{(g)} ⇌ N2O4_{(g)}}\]
Which among the following salts, solubility decreases with increase in temperature?
The enthalpy of formation of nitrogen dioxide is +33.2 kJ mol−1. The enthalpy of the reaction \[\ce{2N2_{(g)} + 4O2_{(g)} -> 4NO2_{(g)}}\]; is ____________.
Standard enthalpy of formation of water is - 286 kJ mol-1. When 1800 mg of water is formed from its constituent elements in their standard states the amount of energy liberated is ______.
Standard entropies of N2(g), H2(g), and NH3(g) are a1, a2 and a3 J K-1 mol-1 respectively. What is value of ΔS° for formation of NH3(g)?
Which of the following equations has ΔfH° and ΔH° same?
From the following bond energies:
H – H bond energy: 431.37 kJ mol−1
C = C bond energy: 606.10 kJ mol−1
C – C bond energy: 336.49 kJ mol−1
C – H bond energy: 410.50 kJ mol−1
Enthalpy for the given reaction will be:
\[\begin{array}{cc}
\phantom{}\ce{H}\phantom{...}\ce{H}\phantom{...................}\ce{H}\phantom{...}\ce{H}\phantom{....}\\
\phantom{.}|\phantom{....}|\phantom{....................}|\phantom{....}|\phantom{.....}\\
\ce{C = C + H - H -> H - C - C - H}\\
\phantom{.}|\phantom{....}|\phantom{....................}|\phantom{....}|\phantom{.....}\\
\phantom{}\ce{H}\phantom{...}\ce{H}\phantom{...................}\ce{H}\phantom{...}\ce{H}\phantom{....}
\end{array}\]
Identify the invalid equation.
How many moles of helium gas occupies 22.4 Lat 0°c and at 1 atmospheric pressure?
What is enthalpy of formation of NH3 if bond enthalpies as (N ≡ N) = - 941 kJ/mol.
\[\ce{(H - H)}\] = 436 kJ/mol and \[\ce{(N - H)}\] = 389 kJ/mol?
The enthalpy change that accompanies a reaction in which 1 mole of its standard state is formed from its elements in their standard states
Calculate the standard enthalpy of the reaction:
SiO2(s) + 3C(graphite) → SiC(s) + 2CO(g) from the following reactions:
- Si(s) + O2(g) → SiO2(s), ΔrH° = −911kJ
- 2C(graphite) + O2(g) → 2CO(g), ΔrH° = −221kJ
- Si(s) + C(graphite) → SiC(s), ΔrH° = −65.3kJ
Which of the following reactions defines the enthalpy of formation?
Heat of combustion of methane is - 890 kJ/mol. On combustion of 12 gm of methane in excess of oxygen, ______ heat is evolved.
Heat of combustion of CH4(g) is -890 kJ/mole. What is the value of Δc H of 8gm of methane?
Calculate the standard enthalpy of combustion of methane if the standard enthalpy of formation of methane, carbon dioxide and water are −74.8, −393.5 and −285.8 kJmol−1 respectively.