English

Calculate enthalpy of formation of HCl if bond enthalpies of H2, Cl2 and HCl are 434 kJ mol-1, 242 kJ mol–1 and 431 kJ mol–1 respectively. - Chemistry

Advertisements
Advertisements

Question

Calculate enthalpy of formation of HCl if bond enthalpies of H2, Cl2 and HCl are 434 kJ mol-1, 242 kJ mol–1 and 431 kJ mol–1 respectively.

Numerical

Solution

rH° = Σ∆H°(reactant bonds) − Σ∆H°(product bonds)

\[\ce{H_{2(g)} + Cl_{2(g)} -> 2HCl_{(g)}}\]

∴ ∆rH° = [1 mol × 434 kJ mol−1 + 1 mol × 242 kJ mol−1 - [2 mol × 431 kJ mol−1]

= - 186 kJ

∴ \[\ce{H_{2(g)} + Cl_{2(g)} -> 2HCl_{(g)}}\],  ∆rH° = −186 kJ

For enthalpy of formation of HCl, the reaction is

\[\ce{\frac{1}{2}H_{2(g)} + \frac{1}{2}Cl_{2(g)} -> HCl_{(g)}}\]

rH° = `(- 186  "kJ")/(2 "mol")` = - 93 kJ mol–1

shaalaa.com
Thermochemistry
  Is there an error in this question or solution?
Chapter 4: Chemical Thermodynamics - Very short answer questions

APPEARS IN

SCERT Maharashtra Chemistry [English] 12 Standard HSC
Chapter 4 Chemical Thermodynamics
Very short answer questions | Q 7

RELATED QUESTIONS

Select the most appropriate option.

Which of the following reactions is exothermic?


Answer the following in one or two sentences.

What is standard state of a substance?


Answer in brief.

How will you calculate reaction enthalpy from data on bond enthalpies?


The enthalpy change of the following reaction:

\[\ce{CH_{4(g)} + Cl_{2(g)} -> CH3Cl_{(g)} + HCl_{(g)}ΔH^0 = –104 kJ}\]

Calculate C – Cl bond enthalpy. The bond enthalpies are:

Bond C − H Cl − Cl H − Cl
∆H°/kJ mol−1 414 243 431

Define standard enthalpy of formation.


Write an application of Hess’s law.


Does the following reaction represent a thermochemical equation?

\[\ce{CH_{4(g)} + 2O_{2(g)} -> CO_{2(g)} + 2H2O_{(g)}}\], ∆fH° = –900 kJ mol–1


When 2 moles of C2H6(g) are completely burnt, 3129 kJ of heat is liberated. If ∆Hf for CO2(g) and H2O(l) are −395 and −286 kJ per mole respectively, the heat combustion of C2H6(g) is ____________.


A compound that has a high negative heat of formation is normally ____________.


The volume of oxygen required for complete combustion of 0.25 mole of methane at STP is ______.


When 6.0 g of graphite reacts with dihydrogen to give methane gas, 37.4 kJ of heat is liberated. What is standard enthalpy of formation of CH4 (g)?


The standard heats of formation for CCl4(g), H2O(g), CO2(g), and HCl(g) are −25.5, −57.8, −94.1 and −22.1 kcal mol−1, respectively.

∆H for the reaction

\[\ce{CCl4_{(g)} + 2H2O_{(g)} -> CO2_{(g)} + 4HCl_{(g)}}\] at 298 K


Which of the following compounds is Not present in its standard state at 25°C and 1 atmosphere pressure?


Given the reaction,

\[\ce{CH2O_{(g)} + O2_{(g)} -> CO2_{(g)} + H2O_{(g)}}\] ΔH = −527 kJ

How much heat will be evolved in the formation of 60 g of CO2?


Calculate the enthalpy of hydrogenation of C2H4(g), given that the enthalpy of formation of ethane and ethylene are −30.2 kcal and +12.5 kcal respectively.


Combustion of glucose takes place as

\[\ce{C6H12O6_{(s)} + 6O2_{(g)} -> 6CO2_{(g)} + 6H2O_{(g)}}\]; ΔH = −72 kcal mol−1

The energy needed for the production of 1.8 g of glucose by photosynthesis will be ___________.


Which of the following equations has ΔfH° and ΔH° same?


Heat of formation of ethane, ethylene acetylene and carbon dioxide are - 136, - 66, - 228 and - 395 (all in kJ) respectively, most stable among them is ______.


Calculate the standard enthalpy of formation of CH3OH(l) from the following data:

  1. \[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)}ΔH^° = - 726 kJ mol^{-1}}\]
  2. \[\ce{C_{(s)} + O2_{(g)} → CO2_{(g)}Δ_cH^° = – 393 kJ mol^{-1}}\]
  3. \[\ce{H2_{(g)} + 1/2 O2_{(g)} -> H2O_{(l)}Δ_fH^° = - 286 kJ mol^{-1}}\]

Calculate the standard enthalpy of:

\[\ce{N2H_{4(g)} + H_{2(g)} -> 2NH_{3(g)}}\]

If ΔH0(N – H) = 389 kJ mol–1, ΔH0(H – H) = 435 kJ mol–1, ΔH0(N – N) = 159 kJ mol–1.


From the following bond energies:

H – H bond energy: 431.37 kJ mol−1

C = C bond energy: 606.10 kJ mol−1

C – C bond energy: 336.49 kJ mol−1

C – H bond energy: 410.50 kJ mol−1

Enthalpy for the given reaction will be:

\[\begin{array}{cc}
\phantom{}\ce{H}\phantom{...}\ce{H}\phantom{...................}\ce{H}\phantom{...}\ce{H}\phantom{....}\\
\phantom{.}|\phantom{....}|\phantom{....................}|\phantom{....}|\phantom{.....}\\
\ce{C = C + H - H -> H - C - C - H}\\
\phantom{.}|\phantom{....}|\phantom{....................}|\phantom{....}|\phantom{.....}\\
\phantom{}\ce{H}\phantom{...}\ce{H}\phantom{...................}\ce{H}\phantom{...}\ce{H}\phantom{....}
\end{array}\]


What is the amount of water formed by the combustion of 1.6 g methane?


How many moles of helium gas occupies 22.4 Lat 0°c and at 1 atmospheric pressure?


When 0.5 gram of sulphur is burnt to form SO2, 4.6 kJ of heat liberated. Calculate enthalpy of formation of SO2(g). (Atomic mass : S = 32, O = 16)


Standard enthalpy of combustion of a substance is given. Then Write thermochemical equation.

ΔcH0[CH3CHO(l)] = - 1166 kJ mol-1


For the reaction, aA + bB → cC + dD, write the expression for enthalpy change of reaction in terms of enthalpies of formation of reactants and products.


Calculate ΔsubH of the H2O from the given data:
\[\ce{H2O_{(s)}->H2O_{(l)},}\] ΔfusH = 6.01kJ mol−1

\[\ce{H2O_{(l)}-> H2O_{(g)},}\] ΔVapH = 45.07 kJ mol−1.


Calculate the standard enthalpy of combustion of methane if the standard enthalpy of formation of methane, carbon dioxide and water are −74.8, −393.5 and −285.8 kJmol−1 respectively.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×