Advertisements
Advertisements
Question
Calculate the standard enthalpy of formation of CH3OH(l) from the following data:
- \[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)}ΔH^° = - 726 kJ mol^{-1}}\]
- \[\ce{C_{(s)} + O2_{(g)} → CO2_{(g)}Δ_cH^° = – 393 kJ mol^{-1}}\]
- \[\ce{H2_{(g)} + 1/2 O2_{(g)} -> H2O_{(l)}Δ_fH^° = - 286 kJ mol^{-1}}\]
Solution
Required equation
\[\ce{C_{(s)} + 2H2_{(g)} +1/2 O2_{(g)} -> CH3OH_{(l)} Δ_FH^° = ?}\]
Reversing the equation (i), multiply equation (iii) by (i) and add all equations.
Equation (i) + (ii) + 2 × (iii)
\[\ce{\cancel{CO_2}_{(g)} + \cancel{2H_2O}_{(l)} -> CH3OH_{(l)} + \cancel{3/2} O2_{(g),} ΔH^° = - 726 kJ mol^{-1}}\]
\[\ce{C_{(s)} + O2_{(g)} -> \cancel{CO_2}_{(g),} Δ_cH^° = - 393 kJ mol^{-1}}\]
\[\ce{2H2_{(g)} + O2_{(g)} -> \cancel{2H_2O}_{(l),} Δ_fH^° = - 572 kJ mol^{-1}}\]
\[\ce{C_{(s)} + 2H2_{(g)} + 1/2 O2_{(g)} -> CH3OH_{(l)}, ΔH = - 239 kJ mol^{-1}}\]
The enthalpy of formation of CH3OH(l) is – 239 kJ mol–1.
APPEARS IN
RELATED QUESTIONS
Select the most appropriate option.
Which of the following reactions is exothermic?
Answer in brief.
How much heat is evolved when 12 g of CO reacts with NO2? The reaction is:
4CO(g) 2NO2(g) → 4CO2(g) + N2(g), ΔrH° = - 1200 kJ
Define the Standard enthalpy of combustion.
The enthalpy change of the following reaction:
\[\ce{CH_{4(g)} + Cl_{2(g)} -> CH3Cl_{(g)} + HCl_{(g)}ΔH^0 = –104 kJ}\]
Calculate C – Cl bond enthalpy. The bond enthalpies are:
Bond | C − H | Cl − Cl | H − Cl |
∆H°/kJ mol−1 | 414 | 243 | 431 |
Calculate the standard enthalpy of combustion of CH4(g) if ΔfH°(CH4) = – 74.8 kJ mol–1, ΔfH°(CO2) = – 393.5 kJ mol–1 and ΔfH°(H2O) = – 285.8 kJ mol–1.
Define standard enthalpy of formation.
Calculate the standard enthalpy of formation of liquid methanol from the following data:
- \[\ce{CH3OH_{(l)} + \frac{3}{2} O_{2(g)} -> CO_{2(g)} + 2H2O_{(l)}}\] ∆H° = – 726 kJ mol–1
- \[\ce{C_{(Graphite)} + O_{2(g)} -> CO_{2(g)}}\] ∆cH° = – 393 kJ mol–1
- \[\ce{H_{2(g)} + \frac{1}{2} O_{2(g)} -> H2O_{(l)}}\] ∆fH° = – 286 kJ mol–1
Calculate the standard enthalpy of the reaction.
\[\ce{2Fe_{(s)} + \frac{3}{2} O_{2(g)} -> Fe2O_{3(s)}}\]
Given:
1. | \[\ce{2Al_{(s)} + Fe2O_{3(s)} -> 2Fe_{(s)} + Al_2O_{3(s)}}\], | ∆rH° = –847.6 kJ |
2. | \[\ce{2Al_{(s)} + \frac{3}{2} O_{2(g)} -> Al2O_{3(s)}}\], | ∆rH° = –1670 kJ |
Define the Enthalpy of ionisation.
The heat of formations of CO(g) and CO2(g) are −26.4 kcal and −94.0 kcal respectively. The heat of combustion of carbon monoxide will be ____________.
The enthalpy change accompanying a reaction in which 1 mole of the substance in the standard state reacts completely with oxygen or is completely burnt is called as ____________.
\[\ce{S + 3/2O2 -> SO3 +2{x} kcal}\] .........(i)
\[\ce{SO2 + 1/2O2 -> SO3 + {y} kcal}\] .......(ii)
The heat of formation of SO2 is ____________.
Which among the following salts, solubility decreases with increase in temperature?
Standard enthalpy of formation of water is - 286 kJ mol-1. When 1800 mg of water is formed from its constituent elements in their standard states the amount of energy liberated is ______.
An ideal gas expands isothermally and reversibly from 10 m3 to 20 m3 at 300 K performing 5 .187 kJ of work on surrounding. Calculate number of moles of gas undergoing expansion. (R = 8.314 J K-1 mol-1)
Heat of formation of water is - 272 kJ mol-1. What quantity of water is converted to H2 and O2 by 750 kJ of heat?
Standard entropies of N2(g), H2(g), and NH3(g) are a1, a2 and a3 J K-1 mol-1 respectively. What is value of ΔS° for formation of NH3(g)?
What is the amount of water formed by the combustion of 1.6 g methane?
How many moles of helium gas occupies 22.4 Lat 0°c and at 1 atmospheric pressure?
What is enthalpy of formation of NH3 if bond enthalpies as (N ≡ N) = - 941 kJ/mol.
\[\ce{(H - H)}\] = 436 kJ/mol and \[\ce{(N - H)}\] = 389 kJ/mol?
The enthalpy change that accompanies a reaction in which 1 mole of its standard state is formed from its elements in their standard states
Define and explain the term, enthalpy of reaction.
Standard enthalpy of combustion of a substance is given. Then Write thermochemical equation.
ΔcH0[C2H5OH(1)] = - 1409 kJ mol-1
Heat of combustion of methane is - 890 kJ/mol. On combustion of 12 gm of methane in excess of oxygen, ______ heat is evolved.
For the reaction, aA + bB → cC + dD, write the expression for enthalpy change of reaction in terms of enthalpies of formation of reactants and products.
Draw energy profile diagram and show:
- activated complex
- energy of activation for forward and backward reactions
- enthalpy of reaction
Heat of combustion of CH4(g) is -890 kJ/mole. What is the value of Δc H of 8gm of methane?