हिंदी

Choose the correct alternative answer for the following sub questions and write the correct alphabet. If one of the roots of quadratic equation X2 – kX + 27 = 0 is 3, then find the value of ‘k’ - Algebra

Advertisements
Advertisements

प्रश्न

Choose the correct alternative answer for the following sub questions and write the correct alphabet.

If one of the roots of quadratic equation X2 – kX + 27 = 0 is 3, then find the value of ‘k’

विकल्प

  • 10

  • 12

  • – 12

  • 16

MCQ

उत्तर

12

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Quadratic Equations - Q.1 (A)

संबंधित प्रश्न

If the roots of 2x2 - 6x + k = 0 are real and equal, find k.


If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find  the values of (i) `α^2+β^2` (ii) `α^3+β^3`

 


Form the quadratic equation if the roots are 3 and 8.


If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.


Convert the following equations into simultaneous equations and solve:

`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`


Choose the correct alternative answer for the following sub questions and write the correct alphabet.

Degree of quadratic equation is always ______


Write the roots of following quadratic equation.

(p – 5) (p + 3) = 0


If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.

Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.

Therefore let’s take x = ______

(– 6)2 + k(– 6) + 54 = 0

(______) – 6k + 54 = 0

– 6k + ______ = 0

k = ______


If one of the roots of quadratic equation x2 – kx – 15 = 0 is – 3, then find the value of ‘k’


Roots of a quadratic equation are 5 and – 4, then form the quadratic equation


Solve the following quadratic equation.

`sqrt(3) x^2 + sqrt(2)x - 2sqrt(3)` = 0


Form a quadratic equation if the roots of the quadratic equation are `2 + sqrt(7)` and `2 - sqrt(7)`


Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.


Determine whether (x – 3) is a factor of polynomial x3 – 19x + 30.

Let P(x) = x3 – 19x + 30

By remainder theorem, `square` will be a factor of P(x), if P(3) = 0

Now, P(3) = `square` – 19 `square` + 30

= `square  –  square` + 30

= `square  –  square`

= 0

∵ P(3) = 0

Hence, `square` is a factor of polynomial x3 – 19x + 30.


If the sum of the roots of the quadratic equation x2 + kx + 6 = 0 is 6, then the value of k is ______.


Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.


If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.


One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.

Since, `square` is a root of equation x2 + 5x + a = 0

∴ Put x = `square` in the equation

⇒ `square^2 + 5 xx square + a` = 0

⇒ `square + square + a` = 0

⇒ `square + a` = 0

⇒ a = `square`


Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×