हिंदी

Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0. - Algebra

Advertisements
Advertisements

प्रश्न

Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.

योग

उत्तर

The given equation is 2m2 – 5m = 0.

Putting m = 2 in L.H.S. of equation (i), we get

L.H.S. = 2 × (2)2 – 5 × (2)

= 2 × 4 – 10

= 8 – 10

= – 2

∴ L.H.S. ≠ R.H.S.

∴ 2 is not the root of a given equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

APPEARS IN

संबंधित प्रश्न

If the roots of 2x2 - 6x + k = 0 are real and equal, find k.


If the roots of x² + kx + k = 0 are real and equal, what is the value of k?


If α and β are the roots of the quadratice equation x²- 2x - 7= 0, find the
value α² + β²


Form the quadratic equation if its roots are 5 and 7. 


Solve the quadratic equation : 3x4 - 13x2 +10 = 0.


Convert the following equations into simultaneous equations and solve:

`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`


If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation


Roots of a quadratic equation are 5 and – 4, then form the quadratic equation


If the roots of the given quadratic equation are real and equal, then find the value of ‘k’

kx(x – 2) + 6 = 0


Solve the following quadratic equations by formula method.

`y^2 + 1/3y` = 2


Form a quadratic equation if the roots of the quadratic equation are `2 + sqrt(7)` and `2 - sqrt(7)`


Determine whether (x – 3) is a factor of polynomial x3 – 19x + 30.

Let P(x) = x3 – 19x + 30

By remainder theorem, `square` will be a factor of P(x), if P(3) = 0

Now, P(3) = `square` – 19 `square` + 30

= `square  –  square` + 30

= `square  –  square`

= 0

∵ P(3) = 0

Hence, `square` is a factor of polynomial x3 – 19x + 30.


If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.


The value of the discriminant of the equation x2 + 6x – 15 = 0 is ______.


Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.


If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.


One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.

Since, `square` is a root of equation x2 + 5x + a = 0

∴ Put x = `square` in the equation

⇒ `square^2 + 5 xx square + a` = 0

⇒ `square + square + a` = 0

⇒ `square + a` = 0

⇒ a = `square`


Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×