Advertisements
Advertisements
प्रश्न
If the roots of the given quadratic equation are real and equal, then find the value of ‘k’
kx(x – 2) + 6 = 0
उत्तर
kx(x – 2) + 6 = 0
∴ kx2 – 2kx + 6 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = k, b = – 2k, c = 6
∆ = b2 – 4ac
= (–2k)2 – 4 × k × 6
= 4k2 – 24k
∴ ∆ = 4k(k – 6)
Since the roots are real and equal,
∆ = 0
∴ 4k(k – 6) = 0
∴ k(k – 6) = 0
∴ k = 0 or k – 6 = 0
But, if k = 0, then quadratic coefficient becomes zero.
∴ k ≠ 0
∴ k = 6
APPEARS IN
संबंधित प्रश्न
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find the values of (i) `α^2+β^2` (ii) `α^3+β^3`
If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.
Solve the quadratic equation : 3x4 - 13x2 +10 = 0.
Convert the following equations into simultaneous equations and solve:
`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
If one of the roots of quadratic equation X2 – kX + 27 = 0 is 3, then find the value of ‘k’
Roots of a quadratic equation are 5 and – 4, then form the quadratic equation
Solve the following quadratic equations by formula method.
`y^2 + 1/3y` = 2
Form a quadratic equation if the roots of the quadratic equation are `2 + sqrt(7)` and `2 - sqrt(7)`
Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.
One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k.
Activity:
One of the roots of equation kx2 – 10x + 3 = 0 is 3.
Putting x = `square` in the above equation
∴ `"k"(square)^2 - 10 xx square + 3` = 0
∴ `square` – 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`
Solve the following quadratic equation using formula:
x2 + 10x + 2 = 0
The value of the discriminant of the equation x2 + 6x – 15 = 0 is ______.
One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.
Since, `square` is a root of equation x2 + 5x + a = 0
∴ Put x = `square` in the equation
⇒ `square^2 + 5 xx square + a` = 0
⇒ `square + square + a` = 0
⇒ `square + a` = 0
⇒ a = `square`
If 3 is one of the roots of the quadratic equation kx2 − 7x + 12 = 0, then k = ______.