Advertisements
Advertisements
प्रश्न
One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k.
Activity:
One of the roots of equation kx2 – 10x + 3 = 0 is 3.
Putting x = `square` in the above equation
∴ `"k"(square)^2 - 10 xx square + 3` = 0
∴ `square` – 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`
उत्तर
One of the roots of equation kx2 – 10x + 3 = 0 is 3.
Putting x = 3 in the above equation
∴ k(3)2 – 10 × 3 + 3 = 0
∴ 9k – 30 + 3 = 0
∴ 9k = 27
∴ k = `27/9` = 3
APPEARS IN
संबंधित प्रश्न
Solve : 7y = -3y2 - 4
If the roots of x² + kx + k = 0 are real and equal, what is the value of k?
If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.
Form the quadratic equation if its roots are 5 and 7.
Solve the quadratic equation : 3x4 - 13x2 +10 = 0.
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
Degree of quadratic equation is always ______
Write the roots of following quadratic equation.
(p – 5) (p + 3) = 0
If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation
If the roots of the given quadratic equation are real and equal, then find the value of ‘k’
kx(x – 2) + 6 = 0
Solve the following quadratic equations by formula method.
`y^2 + 1/3y` = 2
Solve the following quadratic equation.
`1/(4 - "p") - 1/(2 + "p") = 1/4`
Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation
Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.
Solve the following quadratic equation using formula:
x2 + 10x + 2 = 0
Determine whether (x – 3) is a factor of polynomial x3 – 19x + 30.
Let P(x) = x3 – 19x + 30
By remainder theorem, `square` will be a factor of P(x), if P(3) = 0
Now, P(3) = `square` – 19 `square` + 30
= `square – square` + 30
= `square – square`
= 0
∵ P(3) = 0
Hence, `square` is a factor of polynomial x3 – 19x + 30.
Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.
If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.
One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.
Since, `square` is a root of equation x2 + 5x + a = 0
∴ Put x = `square` in the equation
⇒ `square^2 + 5 xx square + a` = 0
⇒ `square + square + a` = 0
⇒ `square + a` = 0
⇒ a = `square`