Advertisements
Advertisements
प्रश्न
Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation
उत्तर
Let α and β be the roots of the quadratic equation.
According to the given conditions,
α + β = 5 and α3 + β3 = 35
Now, (α + β)3 = α3 + 3α2β + 3αβ2 + β3
∴ (α + β)3 = α3 + β3 + 3αβ(α + β)
∴ (5)3 = 35 + 3αβ(5)
∴ 125 = 35 + 15αβ
∴ 125 – 35 = 15αβ
∴ 15αβ = 90
∴ αβ = `90/15`
∴ αβ = 6
∴ The required quadratic equation is
x2 − (α + β)x + αβ = 0
∴ x2 − 5x + 6 = 0
APPEARS IN
संबंधित प्रश्न
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find the values of (i) `α^2+β^2` (ii) `α^3+β^3`
Form the quadratic equation if its roots are 5 and 7.
Solve the quadratic equation : 3x4 - 13x2 +10 = 0.
To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.
Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0
If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation
Roots of a quadratic equation are 5 and – 4, then form the quadratic equation
Solve the following quadratic equation.
`sqrt(3) x^2 + sqrt(2)x - 2sqrt(3)` = 0
Solve the following quadratic equations by formula method.
5m2 – 4m – 2 = 0
Form a quadratic equation if the roots of the quadratic equation are `2 + sqrt(7)` and `2 - sqrt(7)`
Solve the following quadratic equation.
`1/(4 - "p") - 1/(2 + "p") = 1/4`
Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.
Solve the following quadratic equation using formula:
x2 + 10x + 2 = 0
If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.
Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.
Is (x – 5) a factor of the polynomial x3 – 5x – 30?
Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.
If 3 is one of the roots of the quadratic equation kx2 − 7x + 12 = 0, then k = ______.