Advertisements
Advertisements
प्रश्न
Is (x – 5) a factor of the polynomial x3 – 5x – 30?
उत्तर
Let f(x) = x2 – 5x – 30.
By factor theorem, (x – 5) will be the factor of f(x), if f(v) = 0.
Now, f(v) = (5)3 – 5(v) – 30
= 125 – 25 – 30
= 70
∵ f(v) ≠ 0
Hence, (x – 5) is not a factor of f(x).
APPEARS IN
संबंधित प्रश्न
If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.
Solve the quadratic equation : 3x4 - 13x2 +10 = 0.
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
If one of the roots of quadratic equation X2 – kX + 27 = 0 is 3, then find the value of ‘k’
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
Degree of quadratic equation is always ______
Write the roots of following quadratic equation.
(p – 5) (p + 3) = 0
If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.
Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.
Therefore let’s take x = ______
(– 6)2 + k(– 6) + 54 = 0
(______) – 6k + 54 = 0
– 6k + ______ = 0
k = ______
If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation
If the roots of the given quadratic equation are real and equal, then find the value of ‘k’
kx(x – 2) + 6 = 0
Solve the following quadratic equations by formula method.
5m2 – 4m – 2 = 0
Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation
One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k.
Activity:
One of the roots of equation kx2 – 10x + 3 = 0 is 3.
Putting x = `square` in the above equation
∴ `"k"(square)^2 - 10 xx square + 3` = 0
∴ `square` – 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`
Solve the following quadratic equation using formula:
x2 + 10x + 2 = 0
If the sum of the roots of the quadratic equation x2 + kx + 6 = 0 is 6, then the value of k is ______.
If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.
Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.
If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.
One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.
Since, `square` is a root of equation x2 + 5x + a = 0
∴ Put x = `square` in the equation
⇒ `square^2 + 5 xx square + a` = 0
⇒ `square + square + a` = 0
⇒ `square + a` = 0
⇒ a = `square`