Advertisements
Advertisements
प्रश्न
Is (x – 5) a factor of the polynomial x3 – 5x – 30?
उत्तर
Let f(x) = x2 – 5x – 30.
By factor theorem, (x – 5) will be the factor of f(x), if f(v) = 0.
Now, f(v) = (5)3 – 5(v) – 30
= 125 – 25 – 30
= 70
∵ f(v) ≠ 0
Hence, (x – 5) is not a factor of f(x).
APPEARS IN
संबंधित प्रश्न
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
If α and β are the roots of the quadratice equation x²- 2x - 7= 0, find the
value α² + β²
If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find the values of (i) `α^2+β^2` (ii) `α^3+β^3`
If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.
Solve the quadratic equation : 3x4 - 13x2 +10 = 0.
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
If one of the roots of quadratic equation X2 – kX + 27 = 0 is 3, then find the value of ‘k’
If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.
Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.
Therefore let’s take x = ______
(– 6)2 + k(– 6) + 54 = 0
(______) – 6k + 54 = 0
– 6k + ______ = 0
k = ______
To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.
Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0
Solve the following quadratic equation.
`sqrt(3) x^2 + sqrt(2)x - 2sqrt(3)` = 0
Solve the following quadratic equations by formula method.
`y^2 + 1/3y` = 2
Form a quadratic equation if the roots of the quadratic equation are `2 + sqrt(7)` and `2 - sqrt(7)`
Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation
Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.
If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.
The value of the discriminant of the equation x2 + 6x – 15 = 0 is ______.
Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.
If 3 is one of the roots of the quadratic equation kx2 − 7x + 12 = 0, then k = ______.