मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a. - Algebra

Advertisements
Advertisements

प्रश्न

If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.

बेरीज

उत्तर

Equation given is, x2 + 12x + a = 0

As a result of the quadratic equation's real and equal roots,

∴ Discriminant, D = 0

⇒ B2 – 4AC = 0

⇒ (12)2 – 4 × 1 × a = 0

⇒ 4a = 144

⇒ a = 36

As a result, a has a value of 36.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (March) Model set 4 by shaalaa.com

संबंधित प्रश्‍न

Solve : 7y = -3y2 - 4 


If the roots of x² + kx + k = 0 are real and equal, what is the value of k?


If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find  the values of (i) `α^2+β^2` (ii) `α^3+β^3`

 


If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.


Convert the following equations into simultaneous equations and solve:

`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`


If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.

Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.

Therefore let’s take x = ______

(– 6)2 + k(– 6) + 54 = 0

(______) – 6k + 54 = 0

– 6k + ______ = 0

k = ______


To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.

Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0


If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation


If the roots of the given quadratic equation are real and equal, then find the value of ‘k’

kx(x – 2) + 6 = 0


Solve the following quadratic equations by formula method.

5m2 – 4m – 2 = 0


Solve the following quadratic equations by formula method.

`y^2 + 1/3y` = 2


Form a quadratic equation if the roots of the quadratic equation are `2 + sqrt(7)` and `2 - sqrt(7)`


Solve the following quadratic equation using formula:

x2 + 10x + 2 = 0


Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.


If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.


One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.

Since, `square` is a root of equation x2 + 5x + a = 0

∴ Put x = `square` in the equation

⇒ `square^2 + 5 xx square + a` = 0

⇒ `square + square + a` = 0

⇒ `square + a` = 0

⇒ a = `square`


If 3 is one of the roots of the quadratic equation kx2 − 7x + 12 = 0, then k = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×