Advertisements
Advertisements
प्रश्न
If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.
उत्तर
Equation given is, x2 + 12x + a = 0
As a result of the quadratic equation's real and equal roots,
∴ Discriminant, D = 0
⇒ B2 – 4AC = 0
⇒ (12)2 – 4 × 1 × a = 0
⇒ 4a = 144
⇒ a = 36
As a result, a has a value of 36.
APPEARS IN
संबंधित प्रश्न
Solve : 7y = -3y2 - 4
If the roots of x² + kx + k = 0 are real and equal, what is the value of k?
If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find the values of (i) `α^2+β^2` (ii) `α^3+β^3`
If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.
Convert the following equations into simultaneous equations and solve:
`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`
If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.
Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.
Therefore let’s take x = ______
(– 6)2 + k(– 6) + 54 = 0
(______) – 6k + 54 = 0
– 6k + ______ = 0
k = ______
To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.
Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0
If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation
If the roots of the given quadratic equation are real and equal, then find the value of ‘k’
kx(x – 2) + 6 = 0
Solve the following quadratic equations by formula method.
5m2 – 4m – 2 = 0
Solve the following quadratic equations by formula method.
`y^2 + 1/3y` = 2
Form a quadratic equation if the roots of the quadratic equation are `2 + sqrt(7)` and `2 - sqrt(7)`
Solve the following quadratic equation using formula:
x2 + 10x + 2 = 0
Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.
If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.
One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.
Since, `square` is a root of equation x2 + 5x + a = 0
∴ Put x = `square` in the equation
⇒ `square^2 + 5 xx square + a` = 0
⇒ `square + square + a` = 0
⇒ `square + a` = 0
⇒ a = `square`
If 3 is one of the roots of the quadratic equation kx2 − 7x + 12 = 0, then k = ______.