Advertisements
Advertisements
प्रश्न
To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.
Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0
उत्तर
When x = 1,
L.H.S. = 12 + 4(1) – 5
= 1 + 4 – 5
= 5 – 5
= 0
= R.H.S.
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0.
संबंधित प्रश्न
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
Solve : 7y = -3y2 - 4
If the roots of x² + kx + k = 0 are real and equal, what is the value of k?
If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find the values of (i) `α^2+β^2` (ii) `α^3+β^3`
Choose the correct alternative answer for the following sub-questions and write the correct alphabet.
Which of the following quadratic equation has roots – 3 and – 5?
Write the roots of following quadratic equation.
(p – 5) (p + 3) = 0
If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.
Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.
Therefore let’s take x = ______
(– 6)2 + k(– 6) + 54 = 0
(______) – 6k + 54 = 0
– 6k + ______ = 0
k = ______
Roots of a quadratic equation are 5 and – 4, then form the quadratic equation
Solve the following quadratic equation.
`sqrt(3) x^2 + sqrt(2)x - 2sqrt(3)` = 0
Solve the following quadratic equation.
`1/(4 - "p") - 1/(2 + "p") = 1/4`
Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation
If the sum of the roots of the quadratic equation x2 + kx + 6 = 0 is 6, then the value of k is ______.
If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.
Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.
Is (x – 5) a factor of the polynomial x3 – 5x – 30?
Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.