Advertisements
Advertisements
प्रश्न
If the sum of the roots of the quadratic equation x2 + kx + 6 = 0 is 6, then the value of k is ______.
पर्याय
– 12
6
12
– 6
उत्तर
If the sum of the roots of the quadratic equation x2 + kx + 6 = 0 is 6, then the value of k is – 6.
Explanation:
Given the quadratic equation, x2 + kx + 6 = 0
We know, Sum of roots (α + β) = `- b/a`
6 = `- k/1`
– k = 6
k = – 6
APPEARS IN
संबंधित प्रश्न
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
Solve : 7y = -3y2 - 4
Form the quadratic equation if the roots are 3 and 8.
Solve the quadratic equation : 3x4 - 13x2 +10 = 0.
Convert the following equations into simultaneous equations and solve:
`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`
Choose the correct alternative answer for the following sub-questions and write the correct alphabet.
Which of the following quadratic equation has roots – 3 and – 5?
If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.
Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.
Therefore let’s take x = ______
(– 6)2 + k(– 6) + 54 = 0
(______) – 6k + 54 = 0
– 6k + ______ = 0
k = ______
To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.
Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0
If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation
Roots of a quadratic equation are 5 and – 4, then form the quadratic equation
Solve the following quadratic equation.
`1/(4 - "p") - 1/(2 + "p") = 1/4`
Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation
Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.
One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k.
Activity:
One of the roots of equation kx2 – 10x + 3 = 0 is 3.
Putting x = `square` in the above equation
∴ `"k"(square)^2 - 10 xx square + 3` = 0
∴ `square` – 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`
Solve the following quadratic equation using formula:
x2 + 10x + 2 = 0
Determine whether (x – 3) is a factor of polynomial x3 – 19x + 30.
Let P(x) = x3 – 19x + 30
By remainder theorem, `square` will be a factor of P(x), if P(3) = 0
Now, P(3) = `square` – 19 `square` + 30
= `square – square` + 30
= `square – square`
= 0
∵ P(3) = 0
Hence, `square` is a factor of polynomial x3 – 19x + 30.
Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.
Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.
If 3 is one of the roots of the quadratic equation kx2 − 7x + 12 = 0, then k = ______.