मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k. Activity: One of the roots of equation kx2 – 10x + 3 = 0 is 3. - Algebra

Advertisements
Advertisements

प्रश्न

One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k.

Activity:

One of the roots of equation kx2 – 10x + 3 = 0 is 3.

Putting x = `square` in the above equation

∴ `"k"(square)^2 - 10 xx square + 3` = 0

∴ `square` – 30 + 3 = 0

∴ 9k = `square`

∴ k = `square`

रिकाम्या जागा भरा
बेरीज

उत्तर

One of the roots of equation kx2 – 10x + 3 = 0 is 3.

Putting x = 3 in the above equation

∴ k(3)2 – 10 × 3 + 3 = 0

9k – 30 + 3 = 0

∴ 9k = 27

∴ k = `27/9` = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (March) Set 1

APPEARS IN

संबंधित प्रश्‍न

If the roots of 2x2 - 6x + k = 0 are real and equal, find k.


Solve : 7y = -3y2 - 4 


If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find  the values of (i) `α^2+β^2` (ii) `α^3+β^3`

 


Form the quadratic equation if the roots are 3 and 8.


Solve the quadratic equation : 3x4 - 13x2 +10 = 0.


Convert the following equations into simultaneous equations and solve:

`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`


Choose the correct alternative answer for the following sub-questions and write the correct alphabet.

Which of the following quadratic equation has roots – 3 and – 5?


Write the roots of following quadratic equation.

(p – 5) (p + 3) = 0


If one of the roots of quadratic equation x2 – kx – 15 = 0 is – 3, then find the value of ‘k’


Solve the following quadratic equation.

`sqrt(3) x^2 + sqrt(2)x - 2sqrt(3)` = 0


Form a quadratic equation if the roots of the quadratic equation are `2 + sqrt(7)` and `2 - sqrt(7)`


Solve the following quadratic equation.

`1/(4 - "p") - 1/(2 + "p") = 1/4`


Determine whether (x – 3) is a factor of polynomial x3 – 19x + 30.

Let P(x) = x3 – 19x + 30

By remainder theorem, `square` will be a factor of P(x), if P(3) = 0

Now, P(3) = `square` – 19 `square` + 30

= `square  –  square` + 30

= `square  –  square`

= 0

∵ P(3) = 0

Hence, `square` is a factor of polynomial x3 – 19x + 30.


If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.


Show that (x + 1) is a factor of the polynomial `x^3 - x^2 - (2 + sqrt(2))x + sqrt(2)`.


Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×