Advertisements
Advertisements
प्रश्न
Determine whether (x – 3) is a factor of polynomial x3 – 19x + 30.
Let P(x) = x3 – 19x + 30
By remainder theorem, `square` will be a factor of P(x), if P(3) = 0
Now, P(3) = `square` – 19 `square` + 30
= `square – square` + 30
= `square – square`
= 0
∵ P(3) = 0
Hence, `square` is a factor of polynomial x3 – 19x + 30.
उत्तर
Let P(x) = x3 – 19x + 30
By remainder theorem, x – 3 will be a factor of P(x), if P(3) = 0
Now, P(3) = (3)3 – 19 (3) + 30
= 27 – 57 + 30
= 57 – 57
= 0
∵ P(3) = 0
Hence, x – 3 is a factor of polynomial x3 – 19x + 30.
APPEARS IN
संबंधित प्रश्न
If the roots of 2x2 - 6x + k = 0 are real and equal, find k.
Solve : 7y = -3y2 - 4
Form the quadratic equation if the roots are 3 and 8.
If one root of the quadratic, x2 - 7x + k = 0 is 4. then find the value of k.
Solve the quadratic equation : 3x4 - 13x2 +10 = 0.
Convert the following equations into simultaneous equations and solve:
`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`
Choose the correct alternative answer for the following sub-questions and write the correct alphabet.
Which of the following quadratic equation has roots – 3 and – 5?
If one of the roots of quadratic equation x2 – kx – 15 = 0 is – 3, then find the value of ‘k’
Roots of a quadratic equation are 5 and – 4, then form the quadratic equation
Solve the following quadratic equation.
`sqrt(3) x^2 + sqrt(2)x - 2sqrt(3)` = 0
Solve the following quadratic equations by formula method.
5m2 – 4m – 2 = 0
Solve the following quadratic equation.
`1/(4 - "p") - 1/(2 + "p") = 1/4`
Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation
If the sum of the roots of the quadratic equation x2 + kx + 6 = 0 is 6, then the value of k is ______.
If the roots of the quadratic equation x2 + 12x + a = 0 are real and equal, then find the value of a.
If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.
Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.