Advertisements
Advertisements
प्रश्न
One of the roots of equation x2 + 5x + a = 0 is – 3. To find the value of a, fill in the boxes.
Since, `square` is a root of equation x2 + 5x + a = 0
∴ Put x = `square` in the equation
⇒ `square^2 + 5 xx square + a` = 0
⇒ `square + square + a` = 0
⇒ `square + a` = 0
⇒ a = `square`
उत्तर
Since, – 3 is a root of equation x2 + 5x + a = 0
∴ Put x = – 3 in the equation
⇒ – 32 + 5 × – 3 + a = 0
⇒ 9 + – 15 + a = 0
⇒ – 6 + a = 0
⇒ a = 6
APPEARS IN
संबंधित प्रश्न
If α and β are the roots of the quadratice equation x²- 2x - 7= 0, find the
value α² + β²
If α and β are the roots of the quadratic equation `x^2 - 4x - 6 = 0`, find the values of (i) `α^2+β^2` (ii) `α^3+β^3`
Form the quadratic equation if the roots are 3 and 8.
Form the quadratic equation if its roots are 5 and 7.
Convert the following equations into simultaneous equations and solve:
`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
If one of the roots of quadratic equation X2 – kX + 27 = 0 is 3, then find the value of ‘k’
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
Degree of quadratic equation is always ______
To decide whether 1 is a root of quadratic equation x2 + 4x – 5 = 0 or not, complete the following activity.
Activity: When x = (______)
L.H.S. = 12 + 4(______) – 5
= 1 + 4 – 5
= (______) – 5
= ______
= R.H.S
Therefore x = 1 is a root of quadratic equation x2 + 4x – 5 = 0
If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation
If the roots of the given quadratic equation are real and equal, then find the value of ‘k’
kx(x – 2) + 6 = 0
Solve the following quadratic equations by formula method.
5m2 – 4m – 2 = 0
Solve the following quadratic equations by formula method.
`y^2 + 1/3y` = 2
One of the roots of equation kx2 – 10x + 3 = 0 is 3. Complete the following activity to find the value of k.
Activity:
One of the roots of equation kx2 – 10x + 3 = 0 is 3.
Putting x = `square` in the above equation
∴ `"k"(square)^2 - 10 xx square + 3` = 0
∴ `square` – 30 + 3 = 0
∴ 9k = `square`
∴ k = `square`
Solve the following quadratic equation using formula:
x2 + 10x + 2 = 0
Determine whether (x – 3) is a factor of polynomial x3 – 19x + 30.
Let P(x) = x3 – 19x + 30
By remainder theorem, `square` will be a factor of P(x), if P(3) = 0
Now, P(3) = `square` – 19 `square` + 30
= `square – square` + 30
= `square – square`
= 0
∵ P(3) = 0
Hence, `square` is a factor of polynomial x3 – 19x + 30.
If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.
Is (x – 5) a factor of the polynomial x3 – 5x – 30?
Find the roots of the quadratic equation `x^2 - (sqrt(3) + 1)x + sqrt(3)` = 0.