मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

The value of the discriminant of the equation x2 + 6x – 15 = 0 is ______. - Algebra

Advertisements
Advertisements

प्रश्न

The value of the discriminant of the equation x2 + 6x – 15 = 0 is ______.

पर्याय

  • – 96

  • 96

  • 24

  • – 24

MCQ
रिकाम्या जागा भरा

उत्तर

The value of the discriminant of the equation x2 + 6x – 15 = 0 is 96.

Explanation:

Given quadratic equation is, x2 + 6x – 15 = 0

Compare the given quadratic equation with ax2 + bx + c = 0, we get

a = 1, b = 6 and c = – 15

We know,

Discriminant, D = b2 – 4ac

= (6)2 – 4 × 1(– 15)

= 36 + 60

= 96

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (March) Model set 2 by shaalaa.com

संबंधित प्रश्‍न

Solve : 7y = -3y2 - 4 


Form the quadratic equation if the roots are 3 and 8.


Form the quadratic equation if its roots are 5 and 7. 


Convert the following equations into simultaneous equations and solve:

`sqrt("x"/"y") = 4, 1/"x" + 1/"y" = 1/"xy"`


If one of the roots of quadratic equation x2 + kx + 54 = 0 is – 6, then complete the following activity to find the value of ‘k’.

Activity: One of the roots of the quadratic equation x2 + kx + 54 = 0 is – 6.

Therefore let’s take x = ______

(– 6)2 + k(– 6) + 54 = 0

(______) – 6k + 54 = 0

– 6k + ______ = 0

k = ______


If one of the roots of quadratic equation x2 – kx – 15 = 0 is – 3, then find the value of ‘k’


If the roots of a quadratic equation are 4 and – 5, then form the quadratic equation


Solve the following quadratic equation.

`sqrt(3) x^2 + sqrt(2)x - 2sqrt(3)` = 0


Solve the following quadratic equations by formula method.

`y^2 + 1/3y` = 2


Sum of the roots of the quadratic equation is 5 and sum of their cubes is 35, then find the quadratic equation


Determine whether 2 is a root of quadratic equation 2m2 – 5m = 0.


Solve the following quadratic equation using formula:

x2 + 10x + 2 = 0


Determine whether (x – 3) is a factor of polynomial x3 – 19x + 30.

Let P(x) = x3 – 19x + 30

By remainder theorem, `square` will be a factor of P(x), if P(3) = 0

Now, P(3) = `square` – 19 `square` + 30

= `square  –  square` + 30

= `square  –  square`

= 0

∵ P(3) = 0

Hence, `square` is a factor of polynomial x3 – 19x + 30.


If the sum of the roots of the quadratic equation x2 + kx + 6 = 0 is 6, then the value of k is ______.


If x = `sqrt(7) - 2`, find the value of `(x + 1/x)`.


If 3 is one of the roots of the quadratic equation kx2 − 7x + 12 = 0, then k = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×