Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If `vec"a"` and `vec"b"` are unit vectors such that `[vec"a", vec"b", vec"a" xx vec"b"] = 1/4`, are unit vectors such that `vec"a"` nad `vec"b"` is
विकल्प
`pi/6`
`pi/4`
`pi/3`
`pi/2`
उत्तर
`pi/6`
APPEARS IN
संबंधित प्रश्न
Find a parametric form of vector equation of a plane which is at a distance of 7 units from t the origin having 3, – 4, 5 as direction ratios of a normal to it
Find the direction cosines of the normal to the plane 12x + 3y – 4z = 65. Also find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin
A plane passes through the point (− 1, 1, 2) and the normal to the plane of magnitude `3sqrt(3)` makes equal acute angles with the coordinate axes. Find the equation of the plane
Find the parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1), (1, – 2, 3) and parallel to the straight line passing through the points (2, 1, – 3) and (– 1, 5, – 8)
Find the parametric form of vector equation, and Cartesian equations of the plane containing the line `vec"r" = (hat"i" - hat"j" + 3hat"k") + "t"(2hat"i" - hat"j" + 4hat"k")` and perpendicular to plane `vec"r"*(hat"i" + 2hat"j" + hat"k")` = 8
Find the parametric vector, non-parametric vector and Cartesian form of the equation of the plane passing through the point (3, 6, – 2), (– 1, – 2, 6) and (6, 4, – 2)
If the straight lines `(x - 1)/1 - (y - 2)/2 = (z - 3)/"m"^2` and `(x - 3)/5 = (y - 2)/"m"^2 = (z - 1)/2` are coplanar, find the distinct real values of m
Choose the correct alternative:
The volume of the parallelepiped with its edges represented by the vectors `hat"i" + hat"j", hat"i" + 2hat"j", hat"i" + hat"j" + pihat"k"` is
Choose the correct alternative:
If `vec"a", vec"b", vec"c"` are three non-coplanar vectors such that `vec"a" xx (vec"b" xx vec"c") = (vec"b" + vec"c")/sqrt(2)` then the angle between `vec"a"` and `vec"b"` is
Choose the correct alternative:
If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = hat"i" + 2hat"j" - 5hat"k", vec"c" = 3hat"i" + 5hat"j" - hat"k"`, then a vector perpendicular to `vec"a"` and lies in the plane containing `vec"b"` and `vec"c"` is
Choose the correct alternative:
The angle between the lines `(x - 2)/3 = (y + 1)/(-2)`, z = 2 ad `(x - 1)/1 = (2y + 3)/3 = (z + 5)/2` is
Choose the correct alternative:
Distance from the origin to the plane 3x – 6y + 2z + 7 = 0 is
Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.
The equation of the plane passing through the point (1, 2, –3) and perpendicular to the planes 3x + y – 2z = 5 and 2x – 5y – z = 7, is ______.
The equation of a plane containing the line of intersection of the planes 2x – y – 4 = 0 and y + 2z – 4 = 0 and passing through the point (1, 1, 0) is ______.
The point in which the join of (–9, 4, 5) and (11, 0, –1) is met by the perpendicular from the origin is ______.
A point moves in such a way that sum of squares of its distances from the co-ordinate axis is 36, then distance of then given point from origin are ______.